Log in

Humanized brain organoids-on-chip integrated with sensors for screening neuronal activity and neurotoxicity

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The complex structure and function of the human central nervous system that develops from the neural tube made in vitro modeling quite challenging until the discovery of brain organoids. Human-induced pluripotent stem cells–derived brain organoids offer recapitulation of the features of early human neurodevelopment in vitro, including the generation, proliferation, and differentiation into mature neurons and micro-macroglial cells, as well as the complex interactions among these diverse cell types of the develo** brain. Recent advancements in brain organoids, microfluidic systems, real-time sensing technologies, and their cutting-edge integrated use provide excellent models and tools for emulation of fundamental neurodevelopmental processes, the pathology of neurological disorders, personalized transplantation therapy, and high-throughput neurotoxicity testing by bridging the gap between two-dimensional models and the complex three-dimensional environment in vivo. In this review, we summarize how bioengineering approaches are applied to mitigate the limitations of brain organoids for biomedical and clinical research. We further provide an extensive overview and future perspectives of the humanized brain organoids-on-chip platforms with integrated sensors toward brain organoid intelligence and biocomputing studies. Such approaches might pave the way for increasing approvable clinical applications by solving their current limitations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Saglam-Metiner P, Gulce-Iz S, Biray-Avci C (2019) Bioengineering-inspired three-dimensional culture systems: organoids to create tumor microenvironment. Gene 686:203–212. https://doi.org/10.1016/j.gene.2018.11.058

    Article  CAS  PubMed  Google Scholar 

  2. Tang XY, Wu S, Wang D et al (2022) Human organoids in basic research and clinical applications. Signal Transduct Target Ther 7. https://doi.org/10.1038/s41392-022-01024-9

  3. Lancaster MA, Renner M, Martin CA et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373–379. https://doi.org/10.1038/nature12517

    Article  CAS  PubMed  Google Scholar 

  4. Tran HN, Gautam V (2022) Micro/nano devices for integration with human brain organoids. Biosens Bioelectron 218:114750. https://doi.org/10.1016/j.bios.2022.114750

    Article  CAS  PubMed  Google Scholar 

  5. Jeong E, Choi S, Cho SW (2022) Recent advances in brain organoid technology for human brain research. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.2c17467

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pașca SP, Arlotta P, Bateup HS et al (2022) A nomenclature consensus for nervous system organoids and assembloids. Nature 609:907–910. https://doi.org/10.1038/s41586-022-05219-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tan SY, Feng X, Cheng LKW, Wu AR (2023) Vascularized human brain organoid on-chip. Lab Chip 23:2693–2709. https://doi.org/10.1039/d2lc01109c

    Article  CAS  PubMed  Google Scholar 

  8. Saglam-metiner P, Devamoglu U, Filiz Y, et al (2023) Spatio-temporal dynamics enhance cellular diversity, neuronal function and further maturation of human cerebral organoids. Commun Biol 6. https://doi.org/10.1038/s42003-023-04547-1

  9. Cho AN, ** Y, An Y et al (2021) Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat Commun 12. https://doi.org/10.1038/s41467-021-24775-5

  10. Smirnova L, Caffo BS, Gracias DH et al (2023) Organoid intelligence (OI): the new frontier in biocomputing and intelligence-in-a-dish. Front Sci 1:1–23. https://doi.org/10.3389/fsci.2023.1017235

    Article  Google Scholar 

  11. Morales Pantoja IE, Smirnova L, Muotri AR et al (2023) First organoid intelligence (OI) workshop to form an OI community. Front Artif Intell 6. https://doi.org/10.3389/frai.2023.1116870

  12. Cai H, Ao Z, Tian C et al (2023) Brain organoid computing for artificial intelligence. bioRxiv Prepr Serv Biol. https://doi.org/10.1101/2023.02.28.530502

  13. Bossink EGBM, Zakharova M, De Bruijn DS et al (2021) Measuring barrier function in organ-on-chips with cleanroom-free integration of multiplexable electrodes. Lab Chip 21:2040–2049. https://doi.org/10.1039/d0lc01289k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kang SY, Kimura M, Shrestha S et al (2023) A pillar and perfusion plate platform for robust human organoid culture and analysis. Adv Healthc Mater 2302502:1–16. https://doi.org/10.1002/adhm.202302502

    Article  CAS  Google Scholar 

  15. Zheng Y, Zhang F, Xu S, Wu L (2021) Advances in neural organoid systems and their application in neurotoxicity testing of environmental chemicals. Genes Environ 43:1–12. https://doi.org/10.1186/s41021-021-00214-1

    Article  CAS  Google Scholar 

  16. Spitz S, Bolognin S, Brandauer K et al (2022) Development of a multi-sensor integrated midbrain organoid-on- a-chip platform for studying Parkinson’s disease. https://doi.org/10.1101/2022.08.19.504522

  17. Song J, Bang S, Choi N, Kim HN (2022) Brain organoid-on-a-chip: a next-generation human brain avatar for recapitulating human brain physiology and pathology. Biomicrofluidics 16. https://doi.org/10.1063/5.0121476

  18. Castiglione H, Vigneron PA, Baquerre C et al (2022) Human brain organoids-on-chip: advances, challenges, and perspectives for preclinical applications. Pharmaceutics 14. https://doi.org/10.3390/pharmaceutics14112301

  19. Park J, Lee BK, Jeong GS et al (2015) Three-dimensional brain-on-a-chip with an interstitial level of flow and its application as an in vitro model of Alzheimer’s disease. Lab Chip 15:141–150. https://doi.org/10.1039/c4lc00962b

    Article  CAS  PubMed  Google Scholar 

  20. Zhu Y, Wang L, Yu H et al (2017) In situ generation of human brain organoids on a micropillar array. Lab Chip 17:2941–2950. https://doi.org/10.1039/C7LC00682A

    Article  CAS  PubMed  Google Scholar 

  21. Zhu Y, Wang L, Yin F et al (2017) Probing impaired neurogenesis in human brain organoids exposed to alcohol. Integr Biol 9:968–978. https://doi.org/10.1039/c7ib00105c

    Article  CAS  Google Scholar 

  22. Yin F, Zhu Y, Wang Y, Qin J (2018) Engineering brain organoids to probe impaired neurogenesis induced by cadmium. ACS Biomater Sci Eng 4:1908–1915. https://doi.org/10.1021/acsbiomaterials.8b00160

    Article  CAS  PubMed  Google Scholar 

  23. Berger E, Magliaro C, Paczia N et al (2018) Millifluidic culture improves human midbrain organoid vitality and differentiation. Lab Chip 18:3172–3183. https://doi.org/10.1039/c8lc00206a

    Article  CAS  PubMed  Google Scholar 

  24. Karzbrun E, Kshirsagar A, Cohen SR et al (2018) Human brain organoids on a chip reveal the physics of folding. Nat Phys 14:515–522. https://doi.org/10.1038/s41567-018-0046-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Y, Wang L, Guo Y et al (2018) Engineering stem cell-derived 3D brain organoids in a perfusable organ-on-a-chip system. RSC Adv 8:1677–1685. https://doi.org/10.1039/c7ra11714k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang Y, Wang L, Zhu Y, Qin J (2018) Human brain organoid-on-a-chip to model prenatal nicotine exposure. Lab Chip 18:851–860. https://doi.org/10.1039/c7lc01084b

    Article  CAS  PubMed  Google Scholar 

  27. Ao Z, Cai H, Havert DJ et al (2020) One-stop microfluidic assembly of human brain organoids to model prenatal cannabis exposure. Anal Chem 92:4630–4638. https://doi.org/10.1021/acs.analchem.0c00205

    Article  CAS  PubMed  Google Scholar 

  28. Rifes P, Isaksson M, Rathore GS et al (2020) Modeling neural tube development by differentiation of human embryonic stem cells in a microfluidic WNT gradient. Nat Biotechnol 38:1265–1273. https://doi.org/10.1038/s41587-020-0525-0

    Article  CAS  PubMed  Google Scholar 

  29. Cui K, Wang Y, Zhu Y et al (2020) Neurodevelopmental impairment induced by prenatal valproic acid exposure shown with the human cortical organoid-on-a-chip model. Microsystems Nanoeng 6.https://doi.org/10.1038/s41378-020-0165-z

  30. Ao Z, Cai H, Wu Z et al (2021) Tubular human brain organoids to model microglia-mediated neuroinflammation. Lab Chip 21:2751–2762. https://doi.org/10.1039/d1lc00030f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ao Z, Song S, Tian C et al (2022) Understanding immune-driven brain aging by human brain organoid microphysiological analysis platform. Adv Sci 9:1–10. https://doi.org/10.1002/advs.202200475

    Article  Google Scholar 

  32. Cui K, Chen W, Cao R et al (2022) Brain organoid-on-chip system to study the effects of breast cancer derived exosomes on the neurodevelopment of brain. Cell Regen 11:1–12. https://doi.org/10.1186/s13619-021-00102-7

    Article  CAS  Google Scholar 

  33. Salmon I, Grebenyuk S, Abdel Fattah AR et al (2022) Engineering neurovascular organoids with 3D printed microfluidic chips. Lab Chip 22:1615–1629. https://doi.org/10.1039/d1lc00535a

    Article  CAS  PubMed  Google Scholar 

  34. Seiler ST, Mantalas GL, Selberg J et al (2022) Modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids. Sci Rep 12:1–12. https://doi.org/10.1038/s41598-022-20096-9

    Article  CAS  Google Scholar 

  35. Zhu Y, Zhang X, Sun L et al (2023) Engineering human brain assembloids by microfluidics. Adv Mater 2210083:1–8. https://doi.org/10.1002/adma.202210083

    Article  CAS  Google Scholar 

  36. Passaro AP, Stice SL (2021) Electrophysiological analysis of brain organoids: current approaches and advancements. Front Neurosci 14:1–13. https://doi.org/10.3389/fnins.2020.622137

    Article  Google Scholar 

  37. Chung WG, Kim E, Song H et al (2022) Recent advances in electrophysiological recording platforms for brain and heart organoids. Adv NanoBiomed Res 2.https://doi.org/10.1002/anbr.202200081

  38. Zhou Y, Song H, Ming G li (2023) Genetics of human brain development. Nat Rev Genet. https://doi.org/10.1038/s41576-023-00626-5

  39. Taverna E, Götz M, Huttner WB (2014) The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex. Annu Rev Cell Dev Biol 30:465–502. https://doi.org/10.1146/annurev-cellbio-101011-155801

    Article  CAS  PubMed  Google Scholar 

  40. Stoufflet J, Tielens S, Nguyen L (2023) Sha** the cerebral cortex by cellular crosstalk. Cell 186:2733–2747. https://doi.org/10.1016/j.cell.2023.05.040

    Article  CAS  PubMed  Google Scholar 

  41. Kim J, Koo BK, Knoblich JA (2020) Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol 21:571–584. https://doi.org/10.1038/s41580-020-0259-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. 2:663–676. https://doi.org/10.1016/j.cell.2006.07.024

  43. Soldner F, Jaenisch R (2019) Stem cells, genome editing, and the path to translational medicine. 175:615–632. https://doi.org/10.1016/j.cell.2018.09.010.Stem

  44. Kelley KW, Pașca SP (2022) Human brain organogenesis: toward a cellular understanding of development and disease. Cell 185:42–61. https://doi.org/10.1016/j.cell.2021.10.003

    Article  CAS  PubMed  Google Scholar 

  45. Lokai T, Albin B, Qubbaj K et al (2023) A review on current brain organoid technologies from a biomedical engineering perspective. Exp Neurol 367:114461. https://doi.org/10.1016/j.expneurol.2023.114461

    Article  CAS  PubMed  Google Scholar 

  46. Eichmüller OL, Knoblich JA (2022) Human cerebral organoids — a new tool for clinical neurology research. Nat Rev Neurol 18:661–680. https://doi.org/10.1038/s41582-022-00723-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Levy RJ, Paşca SP (2022) What have organoids and assembloids taught us about the pathophysiology of neuropsychiatric disorders? Biol Psychiatry 93:632–641. https://doi.org/10.1016/j.biopsych.2022.11.017

    Article  PubMed  Google Scholar 

  48. Steeg R, Mueller SC, Mah N et al (2021) EBiSC best practice: how to ensure optimal generation, qualification, and distribution of iPSC lines. Stem Cell Reports 16:1853–1867. https://doi.org/10.1016/j.stemcr.2021.07.009

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gonzalez C, Armijo E, Bravo-Alegria J et al (2017) Modeling amyloid beta and tau pathology in human cerebral organoids. Physiol Behav 176:139–148. https://doi.org/10.1038/s41380-018-0229-8.Modeling

    Article  Google Scholar 

  50. Arber C, Toombs J, Lovejoy C et al (2020) Familial Alzheimer’s disease patient-derived neurons reveal distinct mutation-specific effects on amyloid beta. Mol Psychiatry 25:2919–2931. https://doi.org/10.1038/s41380-019-0410-8

    Article  PubMed  Google Scholar 

  51. Quadrato G, Nguyen T, Macosko EZ et al (2017) Cell diversity and network dynamics in photosensitive human brain. Nature 42:2920–2921. https://doi.org/10.1038/nature22047

    Article  CAS  Google Scholar 

  52. Velasco S, Kedaigle AJ, Simmons SK, Nash A, Rocha M, Quadrato G, Paulsen B, Nguyen L, Adiconis X, Regev A, Levin JZ, Arlotta P (2019) Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature 570(7762):523–527. https://doi.org/10.1038/s41586-019-1289-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sidhaye J, Knoblich JA (2021) Brain organoids: an ensemble of bioassays to investigate human neurodevelopment and disease. Cell Death Differ 28:52–67. https://doi.org/10.1038/s41418-020-0566-4

    Article  PubMed  Google Scholar 

  54. Sun N, Meng X, Liu Y et al (2021) Applications of brain organoids in neurodevelopment and neurological diseases. J Biomed Sci 28:1–16. https://doi.org/10.1186/s12929-021-00728-4

    Article  Google Scholar 

  55. Adlakha YK (2023) Human 3D brain organoids: steering the demolecularization of brain and neurological diseases. Cell Death Discov 9. https://doi.org/10.1038/s41420-023-01523-w

  56. Cederquist GY, Tchieu J, Callahan SJ et al (2020) A multiplex human pluripotent stem cell platform defines molecular and functional subclasses of autism-related genes. Cell Stem Cell 27:35-49.e6. https://doi.org/10.1016/j.stem.2020.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hofmann B, Zinöcker S, Holm S et al (2022) Organoids in the clinic: a systematic review of outcomes. Cells Tissues Organs 499–511. https://doi.org/10.1159/000527237

  58. Zhao Z, Chen X, Dowbaj AM et al (2022) Organoids. Nat Rev Methods Prim 2. https://doi.org/10.1038/s43586-022-00174-y

  59. Hernández D, Rooney LA, Daniszewski M et al (2022) Culture variabilities of human iPSC-derived cerebral organoids are a major issue for the modelling of phenotypes observed in Alzheimer’s disease. Stem Cell Rev Reports 18:718–731. https://doi.org/10.1007/s12015-021-10147-5

    Article  CAS  Google Scholar 

  60. Jensen KB, Little MH (2023) Organoids are not organs: sources of variation and misinformation in organoid biology. Stem Cell Reports 18:1255–1270. https://doi.org/10.1016/j.stemcr.2023.05.009

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chiaradia I, Lancaster MA (2020) Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo. Nat Neurosci 23:1496–1508. https://doi.org/10.1038/s41593-020-00730-3

    Article  CAS  PubMed  Google Scholar 

  62. Saglam-Metiner P, Duran E, Sabour-Takanlou L et al (2023) Differentiation of neurons, astrocytes, oligodendrocytes and microglia from human induced pluripotent stem cells to form neural tissue-on-chip: a neuroinflammation model to evaluate the therapeutic potential of extracellular vesicles derived from mesenchymal stem cells. Stem Cell Rev Reports. https://doi.org/10.1007/s12015-023-10645-8

    Article  Google Scholar 

  63. Ormel PR, Vieira de Sá R, van Bodegraven EJ et al (2018) Microglia innately develop within cerebral organoids. Nat Commun 9. https://doi.org/10.1038/s41467-018-06684-2

  64. Amin ND, Kelley KW, Amin ND et al (2023) Generating human neural diversity with a multiplexed morphogen screen in organoids. bioRxiv 2023.05.31.541819

  65. Qian X, Song H, Ming GL (2019) Brain organoids: advances, applications and challenges. Dev 146. https://doi.org/10.1242/dev.166074

  66. Reumann D, Krauditsch C, Novatchkova M et al (2023) In vitro modeling of the human dopaminergic system using spatially arranged ventral midbrain-striatum-cortex assembloids. Nat Methods 20:2–5. https://doi.org/10.1038/s41592-023-02080-x

    Article  CAS  Google Scholar 

  67. Legnini I, Emmenegger L, Zappulo A et al (2023) Spatiotemporal, optogenetic control of gene expression in organoids. Nat Methods 20:1544–1552. https://doi.org/10.1038/s41592-023-01986-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fiorenzano A, Sozzi E, Birtele M et al (2021) Single-cell transcriptomics captures features of human midbrain development and dopamine neuron diversity in brain organoids. Nat Commun 12:1–19. https://doi.org/10.1038/s41467-021-27464-5

    Article  CAS  Google Scholar 

  69. Silva CG, Peyre E, Nguyen L (2019) Cell migration promotes dynamic cellular interactions to control cerebral cortex morphogenesis. Nat Rev Neurosci 20:318–329. https://doi.org/10.1038/s41583-019-0148-y

    Article  CAS  PubMed  Google Scholar 

  70. Garritsen O, van Battum EY, Grossouw LM, Pasterkamp RJ (2023) Development, wiring and function of dopamine neuron subtypes. Nat Rev Neurosci 24:134–152. https://doi.org/10.1038/s41583-022-00669-3

    Article  CAS  PubMed  Google Scholar 

  71. Brignani S, Raj DDA, Schmidt ERE et al (2020) Remotely produced and axon-derived netrin-1 instructs GABAergic neuron migration and dopaminergic substantia nigra development. Neuron 107:684-702.e9. https://doi.org/10.1016/j.neuron.2020.05.037

    Article  CAS  PubMed  Google Scholar 

  72. Smits LM, Magni S, Kinugawa K et al (2020) Single-cell transcriptomics reveals multiple neuronal cell types in human midbrain-specific organoids. Cell Tissue Res 382:463–476. https://doi.org/10.1007/s00441-020-03249-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Walter J, Bolognin S, Poovathingal SK et al (2021) The Parkinson’s-disease-associated mutation LRRK2-G2019S alters dopaminergic differentiation dynamics via NR2F1. Cell Rep 37. https://doi.org/10.1016/j.celrep.2021.109864

  74. Zagare A, Barmpa K, Smajic S et al (2022) Midbrain organoids mimic early embryonic neurodevelopment and recapitulate LRRK2-p.Gly2019Ser-associated gene expression. Am J Hum Genet 109:311–327. https://doi.org/10.1016/j.ajhg.2021.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bagley JA, Reumann D, Bian S et al (2017) Fused cerebral organoids model interactions between brain regions. Nat Methods 14:743–751. https://doi.org/10.1038/nmeth.4304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sabate-Soler S, Nickels SL, Saraiva C et al (2022) Microglia integration into human midbrain organoids leads to increased neuronal maturation and functionality. Glia 70:1267–1288. https://doi.org/10.1002/glia.24167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Birey F, Andersen J, Makinson CD et al (2017) Assembly of functional forebrain spheroids from human pluripotent cells. Nature 545:54–59. https://doi.org/10.1038/nature22330.Assembly

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. **ang Y, Tanaka Y, Patterson B, et al (2018) Fusion of regionally-specified hPSC-derived organoids models human. 21:383–398. https://doi.org/10.1016/j.stem.2017.07.007.Fusion

  79. **ang Y, Tanaka Y, Cakir B et al (2020) hESC-derived thalamic organoids form reciprocal projections when fused with cortical organoids. 24:487–497.https://doi.org/10.1016/j.stem.2018.12.015.hESC-derived

  80. Miura Y, Li MY, Birey F et al (2020) Generation of human striatal organoids and cortico-striatal assembloids from human pluripotent stem cells. Nat Biotechnol 38:1421–1430. https://doi.org/10.1038/s41587-020-00763-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Miura Y, Li MY, Revah O et al (2022) Engineering brain assembloids to interrogate human neural circuits. Nat Protoc 17:15–35. https://doi.org/10.1038/s41596-021-00632-z

    Article  CAS  PubMed  Google Scholar 

  82. Martins F, Miguel J, Fischer C et al (2020) Self-organizing 3D human trunk neuromuscular organoids. Cell Stem Cell 26:172-186.e6. https://doi.org/10.1016/j.stem.2019.12.007

    Article  CAS  Google Scholar 

  83. Ao Z, Cai H, Wu Z et al (2021) Controllable fusion of human brain organoids using acoustofluidics. Lab Chip 4. https://doi.org/10.1039/D0LC01141J

  84. Park DS, Kozaki T, Tiwari SK et al (2023) iPS-cell-derived microglia promote brain organoid maturation via cholesterol transfer. Nature 623:397–405. https://doi.org/10.1038/s41586-023-06713-1

    Article  CAS  PubMed  Google Scholar 

  85. Abud EM, Ramirez RN, Martinez ES et al (2017) iPSC-derived human microglia-like cells to study neurological diseases. Neuron 94:278-293.e9. https://doi.org/10.1016/j.neuron.2017.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pham MT, Pollock KM, Rose MD et al (2018) Generation of human vascularized brain organoids. NeuroReport 29:588–593. https://doi.org/10.1097/WNR.0000000000001014

    Article  PubMed  PubMed Central  Google Scholar 

  87. Shi Y, Sun L, Wang M et al (2020) Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLoS Biol 18:1–29. https://doi.org/10.1371/journal.pbio.3000705

    Article  CAS  Google Scholar 

  88. Sun XY, Ju XC, Li Y et al (2022) Generation of vascularized brain organoids to study neurovascular interactions. Elife 11:1–28. https://doi.org/10.7554/eLife.76707

    Article  Google Scholar 

  89. McComish SF, MacMahon Copas AN, Caldwell MA (2022) Human brain-based models provide a powerful tool for the advancement of Parkinson’s disease research and therapeutic development. Front Neurosci 16:1–15. https://doi.org/10.3389/fnins.2022.851058

    Article  Google Scholar 

  90. Jusop AS, Thanaskody K, Tye GJ et al (2023) Development of brain organoid technology derived from iPSC for the neurodegenerative disease modelling: a glance through. Front Mol Neurosci 16:1–14. https://doi.org/10.3389/fnmol.2023.1173433

    Article  Google Scholar 

  91. Wang SN, Wang Z, Xu TY et al (2020) Cerebral organoids repair ischemic stroke brain injury. Transl Stroke Res 11:983–1000. https://doi.org/10.1007/s12975-019-00773-0

    Article  CAS  PubMed  Google Scholar 

  92. Qian X, Nguyen HN, Song MM et al (2016) Brain region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165:1238–1254. https://doi.org/10.1016/j.cell.2016.04.032. Brain

  93. Pellegrini L, Bonfio C, Chadwick J et al (2020) Human CNS barrier-forming organoids with cerebrospinal fluid production. Science (80- ) 369. https://doi.org/10.1126/science.aaz5626

  94. Matsui T, Shinozawa T (2021) Human organoids for predictive toxicology research and drug development. Front Genet 12:1–14. https://doi.org/10.3389/fgene.2021.767621

    Article  CAS  Google Scholar 

  95. Fan P, Wang YH, Xu M et al (2022) The application of brain organoids in assessing neural toxicity. Front Mol Neurosci 15:1–11. https://doi.org/10.3389/fnmol.2022.799397

    Article  Google Scholar 

  96. Lee JA, Bae DH, Choi WH et al (2022) Effects of sevoflurane exposure on fetal brain development using cerebral organoids. J Mol Neurosci 72:2440–2450. https://doi.org/10.1007/s12031-022-02080-0

    Article  CAS  PubMed  Google Scholar 

  97. Schwartz MP, Hou Z, Propson NE et al (2015) Human pluripotent stem cell-derived neural constructs for predicting neural toxicity. Proc Natl Acad Sci U S A 112:12516–12521. https://doi.org/10.1073/pnas.1516645112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hong Y, Dong X, Chang L et al (2023) Microglia-containing cerebral organoids derived from induced pluripotent stem cells for the study of neurological diseases. iScience 26:106267. https://doi.org/10.1016/j.isci.2023.106267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yaldiz B, Saglam-Metiner P, Yesil-Celiktas O (2022) Decellularised extracellular matrix-based biomaterials for repair and regeneration of central nervous system. Expert Rev Mol Med 23:1–11. https://doi.org/10.1017/erm.2021.22

    Article  CAS  Google Scholar 

  100. Srinivasan B, Kolli AR, Esch MB et al (2015) TEER measurement techniques for in vitro barrier model systems. J Lab Autom 20:107–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Skardal A, Murphy S V, Devarasetty M et al (2017) Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci Rep 7. https://doi.org/10.1038/s41598-017-08879-x

  102. Marrero D, Guimera A, Maes L et al (2023) Organ-on-a-chip with integrated semitransparent organic electrodes for barrier function monitoring. Lab Chip 23:1825–1834. https://doi.org/10.1039/d2lc01097f

    Article  CAS  PubMed  Google Scholar 

  103. Shin SR, Zhang YS, Kim DJ et al (2016) Aptamer-based microfluidic electrochemical biosensor for monitoring cell-secreted trace cardiac biomarkers. Anal Chem 88:10019–10027. https://doi.org/10.1021/acs.analchem.6b02028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dornhof J, Kieninger J, Muralidharan H et al (2022) Microfluidic organ-on-chip system for multi-analyte monitoring of metabolites in 3D cell cultures. Lab Chip 22:225–239. https://doi.org/10.1039/d1lc00689d

    Article  CAS  PubMed  Google Scholar 

  105. Shaegh SAM, Ferrari F De, Zhang YS, et al (2016) A microfluidic optical platform for real-time monitoring of pH and oxygen in microfluidic bioreactors and organ-on-chip devices. Biomicrofluidics 10. https://doi.org/10.1063/1.4955155

  106. Zoio P, Lopes-Ventura S, Oliva A (2022) Biomimetic full-thickness skin-on-a-chip based on a fibroblast-derived matrix. Micro 2:191–211. https://doi.org/10.3390/micro2010013

    Article  Google Scholar 

  107. Zoio P, Lopes-Ventura S, Oliva A (2021) Barrier-on-a-chip with a modular architecture and integrated sensors for real-time measurement of biological barrier function. Micromachines 12. https://doi.org/10.3390/mi12070816

  108. Azizgolshani H, Coppeta JR, Vedula EM et al (2021) High-throughput organ-on-chip platform with integrated programmable fluid flow and real-time sensing for complex tissue models in drug development workflows. Lab Chip 21:1454–1474. https://doi.org/10.1039/d1lc00067e

    Article  CAS  PubMed  Google Scholar 

  109. Henry OYF, Villenave R, Cronce MJ et al (2017) Organs-on-chips with integrated electrodes for trans-epithelial electrical resistance (TEER) measurements of human epithelial barrier function. Lab Chip 17:2264–2271. https://doi.org/10.1039/c7lc00155j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang X, Wang W, Nordin AN et al (2017) The influence of the electrode dimension on the detection sensitivity of electric cell–substrate impedance sensing (ECIS) and its mathematical modeling. Sensors Actuators, B Chem 247:780–790. https://doi.org/10.1016/j.snb.2017.03.047

    Article  CAS  Google Scholar 

  111. Partel S, Dincer C, Kasemann S et al (2016) Lift-off free fabrication approach for periodic structures with tunable nano gaps for interdigitated electrode arrays. ACS Nano 10:1086–1092. https://doi.org/10.1021/acsnano.5b06405

    Article  CAS  PubMed  Google Scholar 

  112. Badiola-Mateos M, Di Giuseppe D, Paoli R et al (2021) A novel multi-frequency trans-endothelial electrical resistance (MTEER) sensor array to monitor blood-brain barrier integrity. Sensors Actuators, B Chem 334:129599. https://doi.org/10.1016/j.snb.2021.129599

    Article  CAS  Google Scholar 

  113. Aydogmus H, Hu M, Ivancevic L et al (2023) An organ-on-chip device with integrated charge sensors and recording microelectrodes. Sci Rep 13:8062. https://doi.org/10.1038/s41598-023-34786-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cui F, Zhou Z, Zhou HS (2020) Review—measurement and analysis of cancer biomarkers based on electrochemical biosensors. J Electrochem Soc 167:37525. https://doi.org/10.1149/2.0252003jes

    Article  CAS  Google Scholar 

  115. Mariani F, Gualandi I, Schuhmann W, Scavetta E (2022) Micro- and nano-devices for electrochemical sensing. Springer Vienna

    Book  Google Scholar 

  116. Modena MM, Chawla K, Misun PM, Hierlemann A (2018) Smart cell culture systems: integration of sensors and actuators into microphysiological systems. ACS Chem Biol 13:1767–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Shin SR, Kilic T, Zhang YS et al (2017) Label-free and regenerative electrochemical microfluidic biosensors for continual monitoring of cell secretomes. Adv Sci 4. https://doi.org/10.1002/advs.201600522

  118. Asif A, Park SH, Soomro AM et al (2021) Microphysiological system with continuous analysis of albumin for hepatotoxicity modeling and drug screening. J Ind Eng Chem 98:318–326. https://doi.org/10.1016/j.jiec.2021.03.035

    Article  CAS  Google Scholar 

  119. Bavli D, Prill S, Ezra E et al (2016) Real-time monitoring of metabolic function in liver-on-chip microdevices tracks the dynamics of Mitochondrial dysfunction. Proc Natl Acad Sci U S A 113:E2231–E2240. https://doi.org/10.1073/pnas.1522556113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tanumihardja E, Rodríguez AP, Loessberg-Zahl JT et al (2021) On-chip electrocatalytic NO sensing using ruthenium oxide nanorods. Sensors Actuators, B Chem 334. https://doi.org/10.1016/j.snb.2021.129631

  121. Li LM, Wang XY, Hu LS et al (2012) Vascular lumen simulation and highly-sensitive nitric oxide detection using three-dimensional gelatin chip coupled to TiC/C nanowire arrays microelectrode. Lab Chip 12:4249–4256. https://doi.org/10.1039/c2lc40148g

    Article  CAS  PubMed  Google Scholar 

  122. Rivera KR, Yokus MA, Erb PD et al (2019) Measuring and regulating oxygen levels in microphysiological systems: design, material, and sensor considerations. Analyst 144:3190–3215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Clark LC, Wolf R, Granger D, Taylor Z (1953) Continuous recording of blood oxygen tensions by polarography. 6:189–193. https://doi.org/10.1152/JAPPL.1953.6.3.189

  124. Liebisch F, Weltin A, Marzioch J et al (2020) Zero-consumption Clark-type microsensor for oxygen monitoring in cell culture and organ-on-chip systems. Sensors Actuators B Chem 322:128652. https://doi.org/10.1016/J.SNB.2020.128652

    Article  CAS  Google Scholar 

  125. Zhang YS, Aleman J, Shin SR et al (2017) Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc Natl Acad Sci U S A 114:E2293–E2302. https://doi.org/10.1073/pnas.1612906114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Aleman J, Kilic T, Mille LS et al (2021) Microfluidic integration of regeneratable electrochemical affinity-based biosensors for continual monitoring of organ-on-a-chip devices. Nat Protoc 16:2564–2593

    Article  CAS  PubMed  Google Scholar 

  127. Kann SH, Shaughnessey EM, Coppeta JR et al (2022) Measurement of oxygen consumption rates of human renal proximal tubule cells in an array of organ-on-chip devices to monitor drug-induced metabolic shifts. Microsystems Nanoeng 8. https://doi.org/10.1038/s41378-022-00442-7

  128. Kann SH, Shaughnessey EM, Zhang X et al (2023) Steady-state monitoring of oxygen in a high-throughput organ-on-chip platform enables rapid and non-invasive assessment of drug-induced nephrotoxicity. Analyst. https://doi.org/10.1039/d3an00380a

    Article  PubMed  Google Scholar 

  129. Ortega MA, Rodríguez-Comas J, Yavas O et al (2021) In situ LSPR sensing of secreted insulin in organ-on-chip. Biosensors 11:1–14. https://doi.org/10.3390/bios11050138

    Article  CAS  Google Scholar 

  130. Chen C, Wang J (2020) Optical biosensors: an exhaustive and comprehensive review. Anal R Soc Chem 5:1605–1628. https://doi.org/10.1039/C9AN01998G

    Article  Google Scholar 

  131. Fuchs S, Johansson S, Tjell A et al (2021) In-line analysis of organ-on-chip systems with sensors: integration, fabrication, challenges, and potential. ACS Biomater Sci Eng 7:2926–2948. https://doi.org/10.1021/acsbiomaterials.0c01110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mou L, Mandal K, Mecwan MM et al (2022) Integrated biosensors for monitoring microphysiological systems. Lab Chip 22:3801–3816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chmayssem A, Verplanck N, Tanase CE et al (2021) Development of a multiparametric (bio)sensing platform for continuous monitoring of stress metabolites. Talanta 229. https://doi.org/10.1016/j.talanta.2021.122275

  134. Ortega MA, Fernández-Garibay X, Castaño AG et al (2019) Muscle-on-a-chip with an on-site multiplexed biosensing system for: in situ monitoring of secreted IL-6 and TNF-α. Lab Chip 19:2568–2580. https://doi.org/10.1039/c9lc00285e

    Article  CAS  PubMed  Google Scholar 

  135. Park TE, Mustafaoglu N, Herland A et al (2019) Hypoxia-enhanced blood-brain barrier chip recapitulates human barrier function and shuttling of drugs and antibodies. Nat Commun 10:1–12. https://doi.org/10.1038/s41467-019-10588-0

    Article  CAS  Google Scholar 

  136. Kadry H, Noorani B, Cucullo L (2020) A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 17:1–24. https://doi.org/10.1186/s12987-020-00230-3

    Article  Google Scholar 

  137. Galea I (2021) The blood–brain barrier in systemic infection and inflammation. Cell Mol Immunol 18:2489–2501. https://doi.org/10.1038/s41423-021-00757-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Cecen B, Saygili E, Zare I et al (2023) Biosensor integrated brain-on-a-chip platforms: progress and prospects in clinical translation. Biosens Bioelectron 225. https://doi.org/10.1016/j.bios.2023.115100

  139. Cakir B, **ang Y, Tanaka Y et al (2019) Development of human brain organoids with functional vascular like system. Nat Methods 16:1169–1175. https://doi.org/10.1038/s41592-019-0586-5.Development

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wang YI, Hasan Erbil Abacia MLS (2017) Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening ying. Physiol Behav 176:139–148. https://doi.org/10.1002/bit.26045.Microfluidic

    Article  Google Scholar 

  141. Huang Q, Tang B, Romero JC et al (2022) Shell microelectrode arrays (MEAs) for brain organoids. Sci Adv 8. https://doi.org/10.1126/sciadv.abq5031

  142. Soscia DA, Lam D, Tooker AC et al (2020) A flexible 3-dimensional microelectrode array for: in vitro brain models. Lab Chip 20:901–911. https://doi.org/10.1039/c9lc01148j

    Article  CAS  PubMed  Google Scholar 

  143. Park Y, Franz CK, Ryu H et al (2021) Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids. Sci Adv 7. https://doi.org/10.1126/sciadv.abf9153

  144. Landry CR, Yip MC, Zhou Y et al (2023) Electrophysiological and morphological characterization of single neurons in intact human brain organoids. J Neurosci Methods 394:1–22. https://doi.org/10.1016/j.jneumeth.2023.109898

    Article  Google Scholar 

  145. Kalmykov A, Huang C, Bliley J et al (2019) Organ-on-e-chip: three-dimensional self-rolled biosensor array for electrical interrogations of human electrogenic spheroids. Sci Adv 5:729–752

    Article  Google Scholar 

  146. Nasr B, Chatterton R, Yong JHM et al (2018) Self-organized nanostructure modified microelectrode for sensitive electrochemical glutamate detection in stem cells-derived brain organoids. Biosensors 8. https://doi.org/10.3390/bios8010014

  147. Miny L, Maisonneuve BGC, Quadrio I, Honegger T (2022) Modeling neurodegenerative diseases using in vitro compartmentalized microfluidic devices. Front Bioeng Biotechnol 10:1–17. https://doi.org/10.3389/fbioe.2022.919646

    Article  Google Scholar 

  148. Bardy C, van den Hurk M, Kakaradov B et al (2016) Predicting the functional states of human iPSC-derived neurons with single-cell RNA-seq and electrophysiology Cedric. Physiol Behav 176:139–148. https://doi.org/10.1038/mp.2016.158.Predicting

    Article  Google Scholar 

  149. Moutaux E, Charlot B, Genoux A et al (2018) An integrated microfluidic/microelectrode array for the study of activity-dependent intracellular dynamics in neuronal networks. Lab Chip 12. https://doi.org/10.1039/C8LC00694F

  150. Kalmykov A, Reddy JW, Bedoyan E et al (2021) Bioelectrical interfaces with cortical spheroids in three-dimensions. J Neural Eng 18. https://doi.org/10.1088/1741-2552/abf290

  151. Pediaditakis I, Kodella KR, Manatakis DV et al (2021) Modeling alpha-synuclein pathology in a human brain-chip to assess blood-brain barrier disruption. Nat Commun 12:1–17. https://doi.org/10.1038/s41467-021-26066-5

    Article  CAS  Google Scholar 

  152. Lee M-H, Liu K-T, Thomas JL et al (2020) Peptide-imprinted poly(hydroxymethyl 3,4-ethylenedioxythiophene) nanotubes for detection of α synuclein in human brain organoids. ACS Appl Nano Mater. https://doi.org/10.1021/acsanm.0c01476

  153. Li C, Fleck JS, Martins-Costa C et al (2023) Single-cell brain organoid screening identifies developmental defects in autism. Nature 621:373–380. https://doi.org/10.1038/s41586-023-06473-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Paulsen B, Velasco S, Kedaigle AJ et al (2022) Autism genes converge on asynchronous development of shared neuron classes. Springer, US

    Book  Google Scholar 

  155. Yang Y, Yang R, Kang B et al (2023) Single-cell long-read sequencing in human cerebral organoids uncovers cell-type-specific and autism-associated exons. Cell Rep 42:113335. https://doi.org/10.1016/j.celrep.2023.113335

    Article  CAS  PubMed  Google Scholar 

  156. Kirischuk S (2022) Kee** excitation – inhibition ratio in balance. Int J Mol Sci Rev 23:5746. https://doi.org/10.3390/ijms23105746

    Article  CAS  Google Scholar 

  157. Sohal VS, Rubenstein JLR (2019) Excitation-inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders. Mol Psychiatry 24:1248–1257. https://doi.org/10.1038/s41380-019-0426-0

    Article  PubMed  PubMed Central  Google Scholar 

  158. Li Y, Tang P, Cai S et al (2020) Organoid based personalized medicine: from bench to bedside. Cell Regeneration

    Google Scholar 

  159. Mayhew CN, Singhania R (2023) A review of protocols for brain organoids and applications for disease modeling. STAR Protoc 4:101860. https://doi.org/10.1016/j.xpro.2022.101860

    Article  PubMed  Google Scholar 

  160. Yaldiz B, Saglam-Metiner P, Cam SB et al (2021) Effect of sterilization methods on the mechanical stability and extracellular matrix constituents of decellularized brain tissues. J Supercrit Fluids 175:105299. https://doi.org/10.1016/j.supflu.2021.105299

    Article  CAS  Google Scholar 

  161. Kabay G, Manz A, Dincer C (2022) Microfluidic roadmap for translational nanotheranostics. Small Methods 6. https://doi.org/10.1002/smtd.202101217

  162. Young AT, Rivera KR, Erb PD, Daniele MA (2019) Monitoring of microphysiological systems: integrating sensors and real-time data analysis toward autonomous decision-making. ACS Sensors 4:1454–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Saorin G, Caligiuri I, Rizzolio F (2023) Microfluidic organoids-on-a-chip: the future of human models. Semin Cell Dev Biol 144:41–54. https://doi.org/10.1016/j.semcdb.2022.10.001

    Article  CAS  PubMed  Google Scholar 

  164. Rajan SAP, Aleman J, Wan MM et al (2020) Probing prodrug metabolism and reciprocal toxicity with an integrated and humanized multi-tissue organ-on-a-chip platform. Acta Biomater 106:124–135. https://doi.org/10.1016/j.actbio.2020.02.015

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by the Scientific and Technological Research Council (TUBITAK) of Turkey through 119M578. This study is partially conducted under the OrChESTRA (Organ-on-a-Chip Focused Strategic Partnership) project, which has received funding from the European Union’s Horizon Europe’s research and innovation program under Grant Agreement No. 101079473. P.S-M. gratefully acknowledges the TUBITAK 2211-A National Graduate Scholarship Program and 2214-A International Doctoral Research Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozlem Yesil-Celiktas.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saglam-Metiner, P., Yildirim, E., Dincer, C. et al. Humanized brain organoids-on-chip integrated with sensors for screening neuronal activity and neurotoxicity. Microchim Acta 191, 71 (2024). https://doi.org/10.1007/s00604-023-06165-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06165-4

Keywords

Navigation