Log in

Facile synthesis of a novel polymer/covalent organic framework@silica composite material in deep eutectic solvent for mixed-mode liquid chromatographic separation

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The solvothermal synthesis of covalent organic framework (COF) modified silica gel usually requires the use of harmful organic solvents, tedious steps, and harsh reaction conditions. In pursuit of green chemistry, a new strategy for the facile preparation of COF@SiO2 composite material was realized in this work by using a low-toxicity and low-cost deep eutectic solvent as the reaction medium. Additionally, a flexible polyacrylic acid (PAA) was introduced for the purpose of improving the hydrophilic selectivity and separation efficiency of COF@SiO2. Based on the above ideas, a novel PAA/COF@SiO2 composite was successfully developed as a liquid chromatographic packing material. Performance evaluation of the slurry-packed PAA/COF@SiO2 column showed that diverse types of analytes were effectively separated, and the retention behavior of polar nucleosides showed a U-shaped trend, indicating mixed-mode of hydrophobic/hydrophilic retention mechanisms. Thermodynamic studies revealed that the separation mechanism was largely independent of temperature. This work verifies the feasibility of synthesizing polymer/COF@SiO2 composite material in the deep eutectic solvent. This strategy provides a theoretical reference for the green and facile preparation of COF@SiO2 as an efficient liquid chromatographic stationary phase.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu Y, Zhang N, Luo KX et al (2022) Recent advances of innovative and high-efficiency stationary phases for chromatographic separations. TrAC Trend Anal Chem 153:116647. https://doi.org/10.1016/j.trac.2022.116647

    Article  CAS  Google Scholar 

  2. Si TT, Wang S, Zhang HX et al (2021) An alternative strategy to construct uniform MOFs-Grafted silica core-shell composites as mixed-mode stationary phase for chromatography separation. Anal Chim Acta 1183:338942. https://doi.org/10.1016/j.aca.2021.338942

    Article  CAS  PubMed  Google Scholar 

  3. Wu Y, Luo KX, Liu YJ et al (2022) Innovative preparation of ureido/dodecyl dual-functionalized silica as a versatile mixed-mode stationary phase for high-resolution chromatographic separations. J Chromatogr A 1665:462834. https://doi.org/10.1016/j.chroma.2022.462834

    Article  CAS  PubMed  Google Scholar 

  4. Si TT, Lu XF, Zhang HX et al (2022) Two-dimensional MOF Cu-BDC nanosheets/ILs@silica core-shell composites as mixed-mode stationary phase for high performance liquid chromatography. Chin Chem Lett 33:3869–3872. https://doi.org/10.1016/j.cclet.2021.10.048

    Article  CAS  Google Scholar 

  5. Zhang S, Zhang F, Yang B et al (2019) A reversed phase/hydrophilic interaction/ion exchange mixed-mode stationary phase for liquid chromatography. Chin Chem Lett 30:470–472. https://doi.org/10.1016/j.cclet.2018.04.013

    Article  CAS  Google Scholar 

  6. Hu ZF, Jiang YH, Cao PP et al (2023) Performance evaluation of 2-undecylimidazole/propyl methacrylate bifunctional silica gel for mixed-mode reversed-phase/anion-exchange chromatography. Microchem J 191:108768. https://doi.org/10.1016/j.microc.2023.108768

    Article  CAS  Google Scholar 

  7. Liu CY, Luo KX, Cao PP et al (2023) Green preparation of composite hydrogel coated hydrophobic long-chain carboxylic acid-bonded silica microspheres for mixed-mode chromatography. Microchem J 193:109104. https://doi.org/10.1016/j.microc.2023.109104

    Article  CAS  Google Scholar 

  8. Wang JZ, Wang JS, Ning XH et al (2021) pH-dependent selective separation of acidic and basic proteins using quaternary ammoniation functionalized cysteine-zwitterionic stationary phase with RPLC/IEC mixed-mode chromatography. Talanta 225:122084. https://doi.org/10.1016/j.talanta.2021.122084

    Article  CAS  PubMed  Google Scholar 

  9. Luo KX, Luo Y, Liu YJ et al (2022) Hydrophobic and hydrophilic selectivity of a multifunctional carbonyldiimidazolium/dodecyl modified silica stationary phase. J Chromatogr A 1677:463300. https://doi.org/10.1016/j.chroma.2022.463300

    Article  CAS  PubMed  Google Scholar 

  10. Fan FB, Lu XF, Wang LC et al (2021) Hydrogel coating with temperature response retention behavior and its application in selective separation of liquid chromatography. Anal Chem 93:16017–16024. https://doi.org/10.1021/acs.analchem.1c03514

    Article  CAS  PubMed  Google Scholar 

  11. Si TT, Lu XF, Zhang HX et al (2022) Metal-organic framework-based core-shell composites for chromatographic stationary phases. TrAC Trend Anal Chem 2022:116545. https://doi.org/10.1016/j.trac.2022.116545

    Article  CAS  Google Scholar 

  12. Wei WJ, Long HY, Liu YJ et al (2023) Preparation and application of a novel imine-linked covalent organic framework@silica composite for reversed-phase and hydrophilic interaction chromatographic separations. Anal Chim Acta 1276:341635. https://doi.org/10.1016/j.aca.2023.341635

    Article  CAS  PubMed  Google Scholar 

  13. Long HY, Jiang YH, Liu YJ et al (2023) Chromatographic separation performance of silica microspheres surface-modified with triazine-containing imine-linked covalent organic frameworks. Talanta 260:124589. https://doi.org/10.1016/j.talanta.2023.124589

    Article  CAS  PubMed  Google Scholar 

  14. **e MC, Quan KJ, Li H et al (2023) Non-porous silica support covalent organic frameworks as stationary phases for liquid chromatography. Chem Commun 59:314–317. https://doi.org/10.1039/d2cc05650j

    Article  CAS  Google Scholar 

  15. Xu S, Li ZX, Zhang LY et al (2021) In situ growth of COF-rLZU1 on the surface of silica sphere as stationary phase for high performance liquid chromatography. Talanta 221:121612. https://doi.org/10.1016/j.talanta.2020.121612

    Article  CAS  PubMed  Google Scholar 

  16. Zheng Q, Liu J, Wu Y et al (2022) Fluoro-functionalized spherical covalent organic frameworks as a liquid chromatographic stationary phase for the high-resolution separation of organic halides. Anal Chem 94:18067–18073. https://doi.org/10.1021/acs.analchem.2c04592

    Article  CAS  PubMed  Google Scholar 

  17. Zheng Q, He Y, Ma W et al (2021) Facile synthesis of spherical covalent organic frameworks as stationary phases for short-column liquid chromatography. Chem Commun 57:7501–7504

    Article  CAS  Google Scholar 

  18. Zheng Q, Liu J, Wu Y et al (2022) Fluoro-functionalized spherical covalent organic frameworks as a liquid chromatographic stationary phase for the high-resolution separation of organic halides. Anal Chem 94:18067–18073. https://doi.org/10.1021/acs.analchem.2c04592

    Article  CAS  PubMed  Google Scholar 

  19. Fan FB, Lu XF, Wang S et al (2021) Non-conjugated flexible network for the functional design of silica-based stationary phase for mixed-mode liquid chromatography. Talanta 233:122548. https://doi.org/10.1016/j.talanta.2021.122548

    Article  CAS  PubMed  Google Scholar 

  20. Ballard N, Asua JM (2018) Radical polymerization of acrylic monomers: an overview. Prog Polym Sci 79:40–60. https://doi.org/10.1016/j.progpolymsci.2017.11.002

    Article  CAS  Google Scholar 

  21. Yang BB, Cai TP, Li Z et al (2017) Surface radical chain-transfer reaction in deep eutectic solvents for preparation of silica-grafted stationary phases in hydrophilic interaction chromatography. Talanta 175:256–263. https://doi.org/10.1016/j.talanta.2017.07.038

    Article  CAS  PubMed  Google Scholar 

  22. El Achkar T, Greige-Gerges H, Fourmentin S et al (2021) Basics and properties of deep eutectic solvents: a review. Environ Chem Lett 19:3397–3408. https://doi.org/10.1007/s10311-021-01225-8

    Article  CAS  Google Scholar 

  23. Hansen BB, Spittle S, Chen B et al (2020) Deep eutectic solvents: a review of fundamentals and applications. Chem Rev 121:1232–1285. https://doi.org/10.1021/acs.chemrev.0c00385

    Article  CAS  PubMed  Google Scholar 

  24. Janicka P, Kaykhaii M, Płotka-Wasylka J et al (2022) Supramolecular deep eutectic solvents and their applications. Green Chem 24:5035–5045. https://doi.org/10.1039/d2gc00906d

    Article  CAS  Google Scholar 

  25. Andruch V, Varfalvyova A, Halko R et al (2022) Application of deep eutectic solvents in bioanalysis. TrAC Trend Anal Chem 154:116660. https://doi.org/10.1016/j.trac.2022.116660

    Article  CAS  Google Scholar 

  26. Jagirani MS, Soylak M (2022) Deep eutectic solvents-based adsorbents in environmental analysis. TrAC Trend Anal Chem 157:116762. https://doi.org/10.1016/j.trac.2022.116762

    Article  CAS  Google Scholar 

  27. Aguirre MA, Canals A (2022) Magnetic deep eutectic solvents in microextraction techniques. TrAC Trend. Anal Chem 146:116500. https://doi.org/10.1016/j.trac.2021.116500

    Article  CAS  Google Scholar 

  28. Qiu JK, Guan PX, Zhao YL et al (2020) Syntheses of two-and three-dimensional covalent organic frameworks in deep eutectic solvents. Green Chem 22:7537–7542. https://doi.org/10.1039/d0gc02670k

    Article  CAS  Google Scholar 

  29. Hu YX, Cai TP, Zhang HJ et al (2020) Two copolymer-grafted silica stationary phases prepared by surface thiol-ene click reaction in deep eutectic solvents for hydrophilic interaction chromatography. J Chromatogr A 1609:460446. https://doi.org/10.1016/j.chroma.2019.460446

    Article  CAS  PubMed  Google Scholar 

  30. Hu YX, Cai TP, Zhang HJ et al (2019) Poly(itaconic acid)-grafted silica stationary phase prepared in deep eutectic solvents and its unique performance in hydrophilic interaction chromatography. Talanta 191:265–271. https://doi.org/10.1016/j.talanta.2018.08.072

    Article  CAS  PubMed  Google Scholar 

  31. Zhang HJ, Qiao X, Cai TP et al (2017) Preparation and characterization of carbon dot-decorated silica stationary phase in deep eutectic solvents for hydrophilic interaction chromatography. Anal Bioanal Chem 409:2401–2410. https://doi.org/10.1007/s00216-017-0454-z

    Article  CAS  PubMed  Google Scholar 

  32. Zheng YC, Wan MJ, Zhou JQ et al (2021) Striped covalent organic frameworks modified stationary phase for mixed mode chromatography. J Chromatogr A 1649:462186. https://doi.org/10.1016/j.chroma.2021.462186

    Article  CAS  PubMed  Google Scholar 

  33. Guo P, Yuan BY, Yu YY et al (2021) Chiral covalent organic framework core-shell composite CTpBD@SiO2 used as stationary phase for HPLC enantioseparation. Microchim Acta 188:1–10. https://doi.org/10.1007/s00604-021-04954-3

    Article  CAS  Google Scholar 

  34. Wang S, Zhang L, **ao R et al (2018) Fabrication of SiO2@COF5 microspheres and their application in high performance liquid chromatography. Anal Methods 10:1968–1976. https://doi.org/10.1039/C8AY00459E

    Article  CAS  Google Scholar 

  35. Chen LX, Gao J, Wu Q et al (2019) Preparation and performance of a novel multi-mode COF-300@SiO2 chromatographic stationary phase. Eur Polym J 116:9–19. https://doi.org/10.1016/j.eurpolymj.2019.04.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to the support of National Natural Science Foundation of China (No. 21906124), Natural Science Foundation of Hubei Province (No. 2017CFB220), and Graduate Innovative Fund of Wuhan Institute of Technology (No. CX2022430).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Tang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 2.09 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, W., Zhao, L., Liu, Y. et al. Facile synthesis of a novel polymer/covalent organic framework@silica composite material in deep eutectic solvent for mixed-mode liquid chromatographic separation. Microchim Acta 191, 35 (2024). https://doi.org/10.1007/s00604-023-06116-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06116-z

Keywords

Navigation