Log in

Electrochemical chiral sensor for levofloxacin detection base on Cu/Fe-BTC amplification

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The key to develo** sensors for chiral drug determination is to exclude interference from enantiomers. In this study, metal–organic frameworks (MOFs) and molecularly imprinted polymer (MIP) were introduced to prepare a chiral sensor for levofloxacin detection. The MIP was electropolymerised on the surface of the Cu/Fe-benzene-1,3,5-tricarboxylate MOF (Cu/Fe-BTC)-modified Au electrode using levofloxacin as a template molecule. After eluting the levofloxacin, a chiral sensor with recognition sites for levofloxacin was obtained. With this site as a switch, a novel method for detecting levofloxacin was established. Because of the enhanced recognition effect, the sensor can effectively exclude the enantiomeric interference of d-ofloxacin. Moreover, Cu/Fe-BTC can effectively amplify the current response signal and improve the sensitivity of the sensor. The linear range of the sensor was 5 to 4000 × 10−11 mol L−1, and the detection limit was 2.07 × 10−11 mol L−1. When applied to detecting levofloxacin in actual samples, the sensor showed a 92.7–109.8% recovery.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Asnin L, Kopchenova M, Vozisov S, Klochkova M, Klimova Y (2020) Enantioselective retention mechanisms of dipeptides on antibiotic-based chiral stationary phases. II. effect of the methanol content in the mobile phase. J Chromatogr A 1626:461371

    Article  CAS  PubMed  Google Scholar 

  2. Rosi-Marshall E, Snow D, Bartelt-Hunt S, Paspalof A, Tank J (2015) A review of ecological effects and environmental fate of illicit drugs in aquatic ecosystems. J Hazard Mater 282:18–25

    Article  CAS  PubMed  Google Scholar 

  3. Gauquier P, Vanommeslaeghe K, Heyden Y, Mangelings D (2022) Modelling approaches for chiral chromatography on polysaccharide-based and macrocyclic antibiotic chiral selectors: a review. Anal Chim Acta 1198:338861

    Article  PubMed  Google Scholar 

  4. Ghanem A, Marzouk A, Sobhy M, Fouad A (2022) A polymer-based monolithic capillary column with polymyxin-B chiral selector for the enantioselective nano-high performance liquid chromatographic pharmaceutical analysis. J Chromatogr A 1662:462714

    Article  CAS  PubMed  Google Scholar 

  5. Chen L, Xu S, Li J (2011) Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Che Soc Rev 40:2922–2942

    Article  CAS  Google Scholar 

  6. Dashtian K, Hajati S, Ghaedi M (2022) Molecular imprinted poly(2,5-benzimidazole)- modified VO2-CuWO4 homotype heterojunction for photoelectrochemical dopamine sensing. Anal Chem 94:6781–6790

    Article  CAS  PubMed  Google Scholar 

  7. BelBruno J (2018) Molecularly imprinted polymers. Chem Rev 119:94–119

    Article  PubMed  Google Scholar 

  8. Li T, Deng Z, Bu J, Liu H, Yang Y, Zhong S (2022) Quantum dot based molecularly imprinted polymer test strips for fluorescence detection of ferritin. Sensor Actuat B-Chem 358:131548

    Article  CAS  Google Scholar 

  9. Zhang L, Luo K, Li D, Zhang Y, Li J (2020) Chiral molecular imprinted sensor for highly selective determination of D-carnitine in enantiomers via dsDNA-assisted conformation immobilization. Anal Chim Acta 1136:82–90

    Article  CAS  PubMed  Google Scholar 

  10. Li S, Pang C, Ma X, Zhao M, Li H, Wang M, Li J, Luo J (2020) Chiral drug fluorometry based on a calix[6]arene/molecularly imprinted polymer double recognition element grafted on nano-C-dots/Ir/Au. Microchim Acta 187:394

    Article  CAS  Google Scholar 

  11. Kitagawa S (2014) Metal-organic frameworks (MOFs). Chem Soc Rev 43:5415–5418

    Article  PubMed  Google Scholar 

  12. Yu L, Zheng Q, **ong L, Feng L, **ao Y (2022) Dual-lanthanide urea metal-organic framework based fluorescent traffic light microsensor for solvent decoding and visual trace water assay. Sensor Actuat B-Chem 356:131328

    Article  CAS  Google Scholar 

  13. Gu Y, Zheng J, Otake K, Sugimoto K, Hosono N, Sakaki S, Li F, Kitagawa S (2020) Structural-deformation-energy-modulation strategy in a soft porous coordination polymer with an interpenetrated framework. Angew Chem Int Edit 59:15517–15521

    Article  CAS  Google Scholar 

  14. Feng T, Wang Y, Wu Y, Kabtamu D, LászlóK LF (2020) A feasible linker transformation strategy towards the formation of Cu2O nanoparticles for immobilization in hierarchical cubtc for adsorption desulfurization. J Mat Chem A 8:8678–8683

    Article  CAS  Google Scholar 

  15. Wu Q, Tan R, Mi X, Tu Y (2020) Electrochemiluminescent aptamer-sensor for alpha synuclein oligomer based on a metal-organic framework. Analyst 145:2159–2167

    Article  CAS  PubMed  Google Scholar 

  16. Orman M, Ozcelikay G, Cetinkaya A, Kaya S, Armutcu C, Zgür E, Uzun L, Ozkan A (2022) Metal-organic frameworks as an alternative smart sensing platform for designing molecularly imprinted electrochemical sensors. TrAC-Trend Anal Chem 150:116573

    Article  Google Scholar 

  17. Wang F, Zhu L, Zhang J (2014) Electrochemical sensor for levofloxacin based on molecularly imprinted polypyrrole-graphene-gold nanoparticles modified electrode. Sensor Actuat B-Chem 192:642–647

    Article  CAS  Google Scholar 

  18. Azab N, Mahmoud A, Trabik Y (2022) Point-of-care diagnostics for therapeutic monitoring of levofloxacin in human plasma utilizing electrochemical sensor mussel-inspired molecularly imprinted copolymer. J Electroanal Chem 918:116504

    Article  Google Scholar 

  19. Nguyen L, Nguyen K (2012) Metal-organic framework MOF-199 as an efficient heterogeneous catalyst for the aza-Michael reaction. Appl Catal A-Gen 425–426:44–52

    Article  Google Scholar 

  20. Israr F, Kim D, Kim Y, Yeongmin K, Oh S (2015) Cost effective and low energy consuming hydrothermal synthesis of Ni based MOF. Energy Eng 24:51–54

    Article  Google Scholar 

  21. Cruz-Navarro J, Mendoza-Huizar L, Salazar-Pereda V, Romo-Gómez C, Cobos-Murcia J, Álvarez-Romero G (2022) A Cu (II)-BTC metal-organic framework modified carbon paste electrode and its application as electrochemical sensor for methanol determination. J Electrochem Soc 169:037509

    Article  CAS  Google Scholar 

  22. Jahan M, Liu Z, Loh K (2013) A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv Funct Mater 23:5363–5372

    Article  CAS  Google Scholar 

  23. Wu X, Lu W (2018) High-performance electrochemical glucose sensing enabled by Cu(TCNQ) nanorod array. Nanotechnology 29:135502

    Article  PubMed  Google Scholar 

  24. Luo J, Li S, Wu Y, Pang C, Ma X, Wang M, Zhang C, Xu Z, Li B (2022) Electrochemical sensor for imidacloprid detection based on graphene oxide/gold nano/β-cyclodextrin multiple amplification strategy. Microchem J 183:107979

    Article  CAS  Google Scholar 

  25. Zhao S, Wang Y, Dong J, He C, Yin H, An P, Zhao K, Zhang X, Gao C, Zhang L, Lv J, Wang J, Zhang J, Khattak A, Khan N, Wei Z, Zhang J, Liu S, Zhao H, Tang Z (2016) Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat Energy 1:16184

    Article  CAS  Google Scholar 

  26. Kaur R, Rana S, Lalit K, Singh P, Kaur K (2020) Electrochemical detection of methyl parathion via a novel biosensor tailored on highly biocompatible electrochemically reduced graphene oxide-chitosan-haemoglobin coatings. Biosens Bioelectron 167:112486

    Article  CAS  PubMed  Google Scholar 

  27. Chen Z, Zhang Y, Yang Y, Shi X, Jia G (2021) Hierarchical nitrogen-doped holey graphene as sensitive electrochemical sensor for methyl parathion detection. Sensor Actuat B-Chem 336:129721

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Chinese Academy of Tropical Agricultural Sciences for Science and Technology Innovation Team of National Tropical Agricultural Science Center (CATASCXTD202314); the CARS (CARS-31); the Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation (ZX-2023002); and the Hainan Province Science and Technology Special Fund (ZDYF2022XDNY232).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuhuai Li, Mingyue Wang or Jian** Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 307 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Li, S., Ma, X. et al. Electrochemical chiral sensor for levofloxacin detection base on Cu/Fe-BTC amplification. Microchim Acta 190, 435 (2023). https://doi.org/10.1007/s00604-023-06009-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06009-1

Keywords

Navigation