Log in

FeNC nanozyme-based electrochemical immunoassay for sensitive detection of human epidermal growth factor receptor 2

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The proof-of-concept of sensitive electrochemical immunoassay for the quantitative monitoring of human epidermal growth factor receptor 2 (HER2) is reported. The assay is carried out on iron nitrogen-doped carbon (FeNC) nanozyme-modified screen-printed carbon electrode using chronoamperometry. Introduction of target HER2 can induce the sandwiched immunoreaction between anti-HER2 monoclonal antibody-coated microplate and biotinylated anti-HER2 polyclonal antibody. Thereafter, streptavidin-glucose oxidase (GOx) conjugate is bonded to the detection antibody. Upon addition of glucose, 3,3′,5,5′-tetramethylbenzidine (TMB) is oxidized through the produced H2O2 with the assistance of GOx and FeNC nanozyme. The oxidized TMB is determined via chronoamperometry. Experimental results revealed that electrochemical immunosensing system exhibited good amperometric response, and allowed the detection of target HER2 as low as 4.5 pg/mL. High specificity and long-term stability are acquired with FeNC nanozyme-based sensing strategy. Importantly, our system provides a new opportunity for protein diagnostics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Zuo W, He M, Zheng H, Liu Y, Liu X, Jiang Y, Wang Z, Lu R, Shao Z (2021) Serum HER2 levels predict treatment efficacy and prognosis in patients with HER2-positive breast cancer undergoing neoadjuvant treatment. Gland surge 10(4):1300–1314

    Article  Google Scholar 

  2. Mishra S, Kachhawa P, Jain AK, Thakur RR, Chaturvedi N (2022) High sensitivity label-free detection of HER2 using an al–gan/gan high electron mobility transistor-based biosensor. Lab Chip 22:4129–4140

    Article  CAS  PubMed  Google Scholar 

  3. Zeng R, Li Y, Li Y, Wan Q, Huang Z, Qiu Z, Tang D (2022) Smartphone-based photoelectrochemical immunoassay with Co9S8@ZnIn2S4 for point-of-care diagnosis of breast cancer biomarker. Research 2022:9831521. https://doi.org/10.34133/2022/9831521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Marchiò C, Annaratone L, Marques A, Casorzo L, Berrino E, Sapino A (2021) Evolving concepts in HER2 evaluation in breast cancer: heterogeneity, HER2-low carcinomas and beyond. Semin Cancer Biol 72:123–135

    Article  PubMed  Google Scholar 

  5. Cheng L, Huang Y, Chen Y, Zhang S, Dai H, Lin Y (2023) Chelating and pendant dual-antenna effect modulated ratiometric electrochemiluminescence system for lung cancer marker assay. Sens Actuators B Chem 388:133791

    Article  CAS  Google Scholar 

  6. Zhang S, Huang Y, Ren H, Chen Y, Yan S, Dai H, Lv L (2023) Facile and portable multimodal sensing platform driven by photothermal-controlled release system for biomarker detection. Biosens Bioelectron 235:115413

    Article  CAS  PubMed  Google Scholar 

  7. Zeng R, Xu J, Liang T, Li M, Tang D (2023) Photocurrent-polarity-switching photoelectrochemical biosensor for switching spatial distance electroactive tags. ACS Sens 8:317–325

    Article  CAS  PubMed  Google Scholar 

  8. Zeng R, Xu J, Lu L, Lin Q, Huang X, Huang L, Li M, Tang D (2022) Photoelectrochemical bioanalysis of microrna on yolk-in-shell Au@CdS based on the catalytic hairpin assembly-mediated CRISPR-Cas12a system. Chem Commun 58:7562–7565

    Article  CAS  Google Scholar 

  9. Zeng R, Wang W, Chen M, Wan Q, Wang C, Knopp D, Tang D (2021) CRISPR-Cas12a-driven MXene-PEDOT:PSS piezoresistive wireless biosensor. Nano Energy 82:105711

    Article  CAS  Google Scholar 

  10. Zeng R, Luo Z, Su L, Zhang L, Tang D, Niessner R, Knopp D (2019) Palindromic molecular beacon based Z-scheme BioCl-Au-CdS photoelectrochemical biodetection. Anal Chem 91:2447–2454

    Article  CAS  PubMed  Google Scholar 

  11. Zeng R, Gong H, Li Y, Li Y, Lin W, Tang D, Knopp D (2022) CRISPR-Cas12a-derived photoelectrochemical biosensor for point-of-care diagnosis of nucleic acid. Anal Chem 94:7442–7448

    Article  CAS  PubMed  Google Scholar 

  12. Huang Y, Zhang S, Chen Y, Dai H, Lin Y (2022) Modular and noncontact wireless detection platform for ovarian cancer markers: electrochemiluminescent and photoacoustic dual-signal output based on multiresponse carbon nano-onions. Anal Chem 94(38):13269–13277

    Article  CAS  PubMed  Google Scholar 

  13. Chen Y, Wei J, Zhang S, Dai H, Lv L, Lin Y (2022) Photothermal triggered clinical swab point-of-care testing diagnostics: fluorescence-pressure multi-signal readout detection of cervical cancer biomarker. Chem Eng J 436:135205

    Article  CAS  Google Scholar 

  14. Su X, Liu X, **. ACS Nano 17:4077–4088

    Article  CAS  PubMed  Google Scholar 

  15. Lobry M, Loyez M, Debliquy M, Chah K, Goormaghtigh E, Caucheteur C (2023) Electro-plasmonic-assisted biosensing of proteins and cells at the surface of optical fiber. Biosens Bioelectron 220:114867

    Article  CAS  PubMed  Google Scholar 

  16. Zhao Q, Zheng L, Gao Y, Li J, Wei J, Zhang M, Sun J, Ouyang J, Na N (2023) Dual active centers linked by a reversible electron station as a multifunctional nanozyme to induce synergetically enhanced cascade catalysis for tumor-specific therapy. J Am Chem Soc 145:12586–12600

    Article  CAS  PubMed  Google Scholar 

  17. Zhao S, Li H, Liu R, Tao N, Deng L, Xu Q, Hou J, Sheng J, Zheng J, Wang L, Chen W, Guo S, Liu Y-N (2023) Nitrogen-centered lactate oxidase nanozyme for tumor lactate modulation and microenvironment remodeling. J Am Chem Soc 145:10322–10332

    Article  CAS  PubMed  Google Scholar 

  18. Zeng R, Li Y, Hu X, Wang W, Li Y, Gong H, Xu J, Huang L, Lu L, Zhang Y, Tang D, Song J (2023) Atomically site synergistic effects of dual-atom nanozyme enhances peroxidase-like properties. Nano Lett 23:6073–6080

    Article  CAS  PubMed  Google Scholar 

  19. Zeng R, Luo Z, Zhang L, Tang D (2018) Platinum nanozyme-catalyzed gas generation for pressure-based bioassay using polyaniline nanowires-functionalized graphene oxide framework. Anal Chem 90:12299–12306

    Article  CAS  PubMed  Google Scholar 

  20. Yu L, Chang J, Zhuang X, Li H, Hou T, Li F (2022) Two-dimensional cobalt-doped Ti3C2 MXene nanozyme-mediated homogeneous electrochemical strategy for pesticides assay based on in situ generation of electroactive substances. Anal Chem 94:3669–3676

    Article  CAS  PubMed  Google Scholar 

  21. Hu W-C, Pang J, Biswas S, Wang K, Wang C, **a X-H (2021) Ultrasensitive detection of bacteria using a 2D MOF nanozyme-amplified electrochemical detector. Anal Chem 93(24):8544–8552

    Article  CAS  PubMed  Google Scholar 

  22. Wu J, Yang Q, Li Q, Li H, Li F (2021) Two-dimensional MnO2 nanozyme-mediated homogeneous electrochemical detection of organophosphate pesticides without the interference of H2O2 and color. Anal Chem 93:4084–4091

    Article  CAS  PubMed  Google Scholar 

  23. Chen Y, Jiang B, Hao H, Li H, Qiu C, Liang X, Qu Q, Zhang Z, Gao R, Duan D, Ji S, Wang D, Liang M (2023) Atomic-level regulation of cobalt single-atom nanozymes: engineering high-efficiency catalase mimics. Angew Chem Int Ed 62:e202301879

    Article  CAS  Google Scholar 

  24. Wang Y, Cho A, Jia G, Cui X, Shin J, Nam I, Noh K-J, Park BJ, Huang R, Han JW (2023) Tuning local coordination environments of manganese single-atom nanozymes with multi-enzyme properties for selective colorimetric biosensing. Angew Chem Int Ed 62:e202300119

    Article  CAS  Google Scholar 

  25. Yu D, Zhang H, Liu Z, Liu C, Du X, Ren J, Qu X (2022) Hydrogen-bonded organic framework (HOF)-based single-neural stem cell encapsulation and transplantation to remodel impaired neural networks. Angew Chem Int Ed 61:e202201485

    Article  CAS  Google Scholar 

  26. Jiao L, Yan H, Wu Y, Gu W, Zhu C, Du D, Lin Y (2020) When nanozymes meet single-atom catalysis. Angew Chem Int Ed 59:2565–2576

    Article  CAS  Google Scholar 

  27. Peng C, Pang R, Li J, Wang E (2023) Current advances on the single-atom nanozyme and its bioapplications. Adv Mater. https://doi.org/10.1002/adma.202211724

    Article  PubMed  Google Scholar 

  28. Xu B, Wang H, Wang W, Gao L, Li S, Pan X, Wang H, Yang H, Meng X, Wu Q, Zheng L, Chen S, Shi X, Fan K, Yan X, Liu H (2019) A single-atom nanozyme for wound disinfection applications. Angew Chem Int Ed 58:4911–4916

    Article  CAS  Google Scholar 

  29. Zeng R, Qiu M, Wan Q, Huang Z, Liu X, Tang D, Knopp D (2022) Smartphone-based electrochemical immunoassay for point-of-care detection of SARS-Cov-2 nucleocapsid protein. Anal Chem 94:15155–15161

    Article  CAS  PubMed  Google Scholar 

  30. Zeng R, Lin L, Gong H, Li Y, Xu J, Huang L, Wang W, Lin S, Tang D, Guo S (2023) Tuning the rate-determining step of uric acid electrooxidation over single-atom-site metal centers for high-performing sensing. Chem Catal 3:100514

    Article  CAS  Google Scholar 

  31. Zeng R, Su L, Luo Z, Zhang L, Lu M, Tang D (2018) Ultrasensitive and label-free electrochemical aptasensor of kanamycin coupling with hybridization chain reaction and strand-displacement amplification. Anal Chim Acta 1038:21–28

    Article  CAS  PubMed  Google Scholar 

  32. Lu L, Hu X, Zeng R, Lin Q, Huang X, Li M, Tang D (2022) Dual-mode colorimetric-photothermal sensing platform of acetylcholinesterase activity based on the peroxidase-like activity of Fe–N–C nanozyme. Anal Chim Acta 1229:340383

    Article  CAS  PubMed  Google Scholar 

  33. Sharma S, Zapatero-Rodríguez J, Saxena R, O’Kennedy R, Srivastava S (2018) Ultrasensitive direct impedimetric immunosensor for detection of serum HER2. Biosens Bioelectron 106:78–85

    Article  CAS  PubMed  Google Scholar 

  34. Zeng Q, Liu W, Lin S, Chen Z, Zeng L, Hu F (2022) Aptamer hb5 modified terahertz metasurface biosensor used for specific detection of HER2. Sens Actuators B Chem 355:131337

    Article  CAS  Google Scholar 

  35. Loyez M, Lobry M, Hassan EM, DeRosa MC, Caucheteur C, Wattiez R (2021) HER2 breast cancer biomarker detection using a sandwich optical fiber assay. Talanta 221:121452

    Article  CAS  PubMed  Google Scholar 

  36. Wang Z, Chen Q, Zhong Y, Yu X, Wu Y, Fu F (2020) A multicolor immunosensor for sensitive visual detection of breast cancer biomarker based on sensitive nadh-ascorbic-acid-mediated growth of gold nanobipyramids. Anal Chem 92:1534–1540

    Article  CAS  PubMed  Google Scholar 

  37. Ou D, Sun D, Lin X, Liang Z, Zhong Y, Chen Z (2019) A dual-aptamer-based biosensor for specific detection of breast cancer biomarker HER2 via flower-like nanozymes and DNA nanostructures. J Mater Chem B 7:3661–3669

    Article  CAS  Google Scholar 

  38. Du C, Jiao J, Zhang H (2023) Biomimetic nanochannels for molybdate transport: application to sensitive electrochemical immunoassay for HER2. Microchim Acta 190(2):53

    Article  CAS  Google Scholar 

  39. Wignarajah S, Chianella I, Tothill IE (2023) Development of electrochemical immunosensors for her-1 and her-2 analysis in serum for breast cancer patients. Biosensors 13(3):355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Díaz-Fernández A, Ferapontov A, Vendelbo MH, Ferapontova EE (2023) Electrochemical cellulase-linked elasa for rapid liquid biopsy testing of serum HER-2/neu. ACS Meas Sci Au 3(3):226–235

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Authors acknowledged financial support from the National Natural Science Foundation of China (Grant nos.: 22274022 and 21874022).

Author information

Authors and Affiliations

Authors

Contributions

Mingha Qiu: conceptualization, experimentation, writing—original draft, formal analysis, and investigation. Yuqing Ren: experimentation, formal analysis, and investigation. Lumin Huang: experimentation and formal analysis. Xueying Zhu: experimentation and formal analysis. Tikai Liang: experimentation and formal analysis. Mei** Li: material characterization and data analysis. Dian** Tang: conceptualization, supervision, funding acquisition, resource, and writing—review and editing.

Corresponding authors

Correspondence to Mei** Li or Dian** Tang.

Ethics declarations

Ethical approval

All experiments were performed in compliance with the relevant laws and Guidelines of Fuzhou University (China), and the experiments have been approved.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, M., Ren, Y., Huang, L. et al. FeNC nanozyme-based electrochemical immunoassay for sensitive detection of human epidermal growth factor receptor 2. Microchim Acta 190, 378 (2023). https://doi.org/10.1007/s00604-023-05964-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05964-z

Keywords

Navigation