Log in

Biomass derived nitrogen functionalized carbon nanodots for nanomolar determination of levofloxacin in pharmaceutical and water samples

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

A Correction to this article was published on 20 June 2023

This article has been updated

Abstract

Binder-free and efficient electrochemical sensing of levofloxacin (LF) was successfully developed based on the nitrogen-doped carbon nanodots (NCNDs). The NCNDs were synthesized by hydrothermal carbonation (180°C for 12 h), and the heteroatom was embedded in aqueous solution of ammonia (NH3). Spectral and microscopic characteristization techniques were used to analyze the topological, crystallinity, and chemical binding behavior of synthesized biomass functional material. HR-TEM image revealed a uniform spherical dot (2.96 nm), and superior quantum yield efficiency (0.42 Φ). The NCNDs was drop coated on a glassy carbon electrode (GCE) and electrochemical sensing of LF was performed by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and amperometric i-t curve in phosphate-buffered saline (PBS; pH = 7.0). The NCNDs modified electrode showed a sharp oxidation peak at +0.95 V (vs. Ag/AgCl) with a four-fold higher current response than the bare GC electrode. The NCNDs/GCE surface not only increases the current response, but has lower detection potential, and facilitates electron transfer reaction. Under optimized working parameters, the NCNDs/GCE showed wide linear concentrations range from 200 nM to 2.8 mM and a low detection limit (LOD) of 48.26 nM (S/N = 3). The electrode modified with NCNDs has high electrochemical sensing stability (RSD = 1.284 ± 0.05% over 5 days), and superior reproducibility (RSD = 1.682 ± 0.06% (n = 3)). Finally, the NCNDs modified GC electrode was successfully applied to quantify the concentration of LF in drug and river water samples with acceptable recovery percentages of 96.60–99.20% and 97.20–99.00% (n=3), respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4

Similar content being viewed by others

Data Availability

Data is available on request from the authors.

Change history

References

  1. Bennett JE, Dolin R, Blaser MJ (2019) Mandell, Douglas. Bennett’s principles and practice of infectious diseases, E-Book, Elsevier Health Sciences

    Google Scholar 

  2. Adelglass J, Deabate CA, Mcelvaine P, Fowler CL, LoCOCCO J, Campbell T (1999) Comparison of the effectiveness of levofloxacin and amoxicillin-clavulanate for the treatment of acute sinusitis in adults. Otolaryngol Neck Surg 120:320–327. https://doi.org/10.1016/S0194-5998(99)70269-X

    Article  CAS  Google Scholar 

  3. Han L, Zhao Y, Chang C, Li F (2018) A novel electrochemical sensor based on poly(p-aminobenzene sulfonic acid)-reduced graphene oxide composite film for the sensitive and selective detection of levofloxacin in human urine. J Electroanal Chem 817:141–148. https://doi.org/10.1016/j.jelechem.2018.04.008

    Article  CAS  Google Scholar 

  4. Maleque M, Hasan MR, Hossen F, Safi S (2012) Development and validation of a simple UV spectrophotometric method for the determination of levofloxacin both in bulk and marketed dosage formulations. J Pharm Anal 2:454–457. https://doi.org/10.1016/j.jpha.2012.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. González JAO, Mochón MC, Barragán de la Rosa FJ (2000) Spectrofluorimetric determination of levofloxacin in tablets, human urine and serum. Talanta 52:1149–1156. https://doi.org/10.1016/S0039-9140(00)00484-7

    Article  PubMed  Google Scholar 

  6. Neckel U, Joukhadar C, Frossard M, Jäger W, Müller M, Mayer BX (2002) Simultaneous determination of levofloxacin and ciprofloxacin in microdialysates and plasma by high-performance liquid chromatography. Anal Chim Acta 463:199–206. https://doi.org/10.1016/S0003-2670(02)00429-4

    Article  CAS  Google Scholar 

  7. Salem AA, Mossa HA, Barsoum BN (2005) Quantitative determinations of levofloxacin and rifampicin in pharmaceutical and urine samples using nuclear magnetic resonance spectroscopy. Spectrochim Acta A 62:466–472. https://doi.org/10.1016/j.saa.2005.01.016

    Article  CAS  Google Scholar 

  8. Shao X, Li Y, Liu Y, Song Z (2011) Rapid determination of levofloxacin in pharmaceuticals and biological fluids using a new chemiluminescence system. J Anal Chem 66:102–107. https://doi.org/10.1134/S1061934811010217

    Article  CAS  Google Scholar 

  9. Umamaheswari R, Pattan-Siddappa G, Sang-Youn K, Mani G, Razan AA, and Ting-Yu L (2022) MoS2 sphere/2D S-Ti3C2 MXene nanocatalysts on laser-induced graphene electrodes for hazardous aristolochic acid and roxarsone electrochemical detection. ACS Applied Nano Materials 5(3):3252–3264. https://doi.org/10.1021/acsanm.1c03680

  10. Umamaheswari R, Mani G, Rinky S, Razan A. A, Ruey-Shin J, Ting-Yu L (2022) Surface engineering of 3D spinel Zn3V2O8 wrapped on sulfur doped graphitic nitride composites: investigation on the dual role of electrocatalyst for simultaneous detection of antibiotic drugs in biological fluids. Composites Part B: Engineering 242110017. https://doi.org/10.1016/j.compositesb.2022.110017

    Article  CAS  Google Scholar 

  11. Cesarino V, Cesarino I, Moraes FC, Machado SAS, Mascaro LH (2014) Carbon nanotubes modified with SnO2 rods for levofloxacin detection. J Braz Chem Soc 25:502–508. https://doi.org/10.5935/0103-5053.20140017

    Article  CAS  Google Scholar 

  12. Wang F, Zhu L, Zhang J (2014) Electrochemical sensor for levofloxacin based on molecularly imprinted polypyrrole–graphene–gold nanoparticles modified electrode. Sens Actuators B Chem 192:642–647. https://doi.org/10.1016/j.snb.2013.11.037

    Article  CAS  Google Scholar 

  13. Borowiec J, Yan K, Tin CC, Zhang J (2015) Synthesis of PDDA functionalized reduced graphene oxide decorated with gold nanoparticles and its electrochemical response toward levofloxacin. J Electrochem Soc 162:H164. https://doi.org/10.1149/2.0811503jes

    Article  CAS  Google Scholar 

  14. Arul P, John SA (2017) Silver nanoparticles built-in zinc metal organic framework modified electrode for the selective non-enzymatic determination of H2O2. Electrochim Acta 235:680–689. https://doi.org/10.1016/j.electacta.2017.03.097

    Article  CAS  Google Scholar 

  15. Arul P, John SA (2017) Electrodeposition of CuO from Cu-MOF on glassy carbon electrode: A non-enzymatic sensor for glucose. J Electroanal Chem 799:61–69. https://doi.org/10.1016/j.jelechem.2017.05.041

    Article  CAS  Google Scholar 

  16. Arul P, Huang ST, Mani G, Jeromiyas N (2020) Surfactant-free solvothermal synthesis of Cu-MOF via protonation-deprotonation approach: a morphological dependent electrocatalytic activity for therapeutic drugs. Microchim Acta 187:650. https://doi.org/10.1007/s00604-020-04631-x

    Article  CAS  Google Scholar 

  17. Fekry AM (2022) An innovative simple electrochemical levofloxacin sensor assembled from carbon paste enhanced with nano-sized fumed silica. Biosensors 12:906. https://doi.org/10.3390/bios12100906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Arul V, Radhakrishnan K, Sampathkumar N, Vinoth Kumar J, Abirami N, Inbaraj BS (2023) Detoxification of toxic organic dye by heteroatom-doped fluorescent carbon dots prepared by green hydrothermal method using Garcinia mangostana extract. Agronomy 13(1):205. https://doi.org/10.3390/agronomy13010205

    Article  CAS  Google Scholar 

  19. Arul V, Edison TNJI, Lee YR, Sethuraman MG (2017) Biological and catalytic applications of green synthesized fluorescent N-doped carbon dots using Hylocereus undatus. J Photochem Photobiol B: Biol 168:142–148. https://doi.org/10.1016/j.jphotobiol.2017.02.007

    Article  CAS  Google Scholar 

  20. Khan ZG, Patil PO (2020) A comprehensive review on carbon dots and graphene quantum dots based fluorescent sensor for biothiols. Microchem J 157:105011. https://doi.org/10.1016/j.microc.2020.105011

    Article  CAS  Google Scholar 

  21. Arul V, Chandrasekaran P, Sivaraman G, Sethuraman MG (2023) Biogenic preparation of undoped and heteroatoms doped carbon dots: effect of heteroatoms do** in fluorescence, catalytic ability and multicolour in-vitro bio-imaging applications - a comparative study. Mater Res Bull 162:112204. https://doi.org/10.1016/j.materresbull.2023.112204

  22. Kurian M, Paul A (2021) Recent trends in the use of green sources for carbon dot synthesis–A short review. Carbon Trends 3:100032. https://doi.org/10.1016/j.cartre.2021.100032

    Article  CAS  Google Scholar 

  23. Milošević T, Milošević N (2012) Factors influencing mineral composition of plum fruits. J Elem 17:453–464. https://doi.org/10.5601/jelem.2012.17.3.08

  24. Tomić J, Štampar F, Glišić FI, Jakopič J (2019) Phytochemical assessment of plum (Prunus domestica L.) cultivars selected in Serbia. Food Chem 299:125113. https://doi.org/10.1016/j.foodchem.2019.125113

    Article  CAS  PubMed  Google Scholar 

  25. El-Beltagi HS, El-Ansary AE, Mostafa MA, Kamel TA, Safwat G (2019) Evaluation of the phytochemical, antioxidant, antibacterial and anticancer activity of Prunus domestica fruit. Not Bot Horti Agrobot Cluj-Napoca 47:395–404. https://doi.org/10.15835/nbha47111402

    Article  CAS  Google Scholar 

  26. Na EJ, Kim DJ, Kim JH, Kim GR (2019) Recent trends in anti-obesity and anti-inflammatory studies in modern health care. Technol Heal Care 27:519–530. https://doi.org/10.3233/THC-191736

    Article  Google Scholar 

  27. Arul P, Nandhini C, Huang ST, Gowthaman NSK, Huang CH (2023) Tailoring of peroxidase mimetics bifunctional nanocomposite: dual mode electro-spectroscopic screening of cholesterol and hydrogen peroxide in real food samples and live cells. Food Chem 414:135747. https://doi.org/10.1016/j.foodchem.2023.135747

    Article  CAS  PubMed  Google Scholar 

  28. Kumaragurubaran N, Arul P, Huang ST, Nandhini C, Veerappan M, Huang CH (2023) Tailoring of bimetallic organic framework-polymeric film composites: real-time fouling-free electrocatalytic application of hydrogen sulfide releasing from organic donors and live cells. Appl Surf Sci 613:156141. https://doi.org/10.1016/j.apsusc.2022.156141

    Article  CAS  Google Scholar 

  29. Arul V, Chandrasekaran P, Sivaraman G, Sethuraman MG (2021) Efficient green synthesis of N, B co-doped bright fluorescent carbon nanodots and their electrocatalytic and bio-imaging applications. Diam Relat Mater 116:108437. https://doi.org/10.1016/j.diamond.2021.108437

    Article  CAS  Google Scholar 

  30. Arul V, Sethuraman MG (2019) Hydrothermally green synthesized nitrogen-doped carbon dots from Phyllanthus emblica and their catalytic ability in the detoxification of textile effluents. ACS omega 4:3449–3457. https://doi.org/10.1021/acsomega.8b03674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Atchudan R, Edison TNJI, Sethuraman MG, Lee YR (2016) Efficient synthesis of highly fluorescent nitrogen-doped carbon dots for cell imaging using unripe fruit extract of Prunus mume. Appl Surf Sci 384:432–441. https://doi.org/10.1016/j.apsusc.2016.05.054

    Article  CAS  Google Scholar 

  32. Kumaragurubaran N, Arul P, Huang ST, Huang CH, Fang SB, Lin YH (2023) Nanocatalyst coupled with a latent-ratiometric electrochemical switch for label-free zero-tolerance rapid detection of live Salmonella in whole blood samples. Sens Actuators B Chem 381:133428. https://doi.org/10.1016/j.snb.2023.133428

    Article  CAS  Google Scholar 

  33.  Umamaheswari R, Pattan-Siddappa G, Shen-Ming C, Mani G, Sang-Youn K, Razan A. A, Ganesh S (2021) Deep eutectic solvents synthesis of perovskite type cerium aluminate embedded carbon nitride catalyst: high-sensitive amperometric platform for sensing of glucose in biological fluids. J Ind Eng Chem 102312–320. https://doi.org/10.1016/j.jiec.2021.07.015

    Article  CAS  Google Scholar 

  34. Dong Y, Pang H, Bin Yang H, Guo C, Shao J, Chi Y, Li CM, Yu T (2013) Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chemie Int Ed 52:7800–7804. https://doi.org/10.1002/anie.201301114

    Article  CAS  Google Scholar 

  35. Radi A, El Ries MA, Kandil S (2003) Electrochemical study of the interaction of levofloxacin with DNA. Anal Chim Acta 495:61–67. https://doi.org/10.1016/j.aca.2003.08.018

    Article  CAS  Google Scholar 

  36. Wen W, Zhao DM, Zhang XH, **ong HY, Wang SF, Chen W, Zhao YD (2012) One-step fabrication of poly (o-aminophenol)/multi-walled carbon nanotubes composite film modified electrode and its application for levofloxacin determination in pharmaceuticals. Sens Actuators B Chem 174:202–209. https://doi.org/10.1016/j.snb.2012.08.010

    Article  CAS  Google Scholar 

  37. Moraes FC, Silva TA, Cesarino I, Lanza MRV, Machado SAS (2013) Antibiotic detection in urine using electrochemical sensors based on vertically aligned carbon nanotubes. Electroanalysis 25:2092–2099. https://doi.org/10.1002/elan.201300261

    Article  CAS  Google Scholar 

  38. Chi Y, Li J (2010) Determination of levofloxacin hydrochloride with multiwalled carbon nanotubes-polymeric alizarin film modified electrode. Russ J Electrochem 46:155–160. https://doi.org/10.1134/S1023193510020059

    Article  CAS  Google Scholar 

  39. Khodari M, Hassan NZ, Mohamed AE, Rashed MN (2023) Electrocatalytic determination of the antibiotic levofloxacin using modified carbon paste electrode with a poly-murexide thin film voltametrically. Electroanalysis 35:e202200431. https://doi.org/10.1002/elan.202200431

  40. Yi W, Han C, Li Z, Guo Y, Liu M, Dong C (2021) A strategy of electrochemical simultaneous detection of acetaminophen and levofloxacin in water based on g-C3N4 nanosheet-doped graphene oxide. Environ Sci Nano 8:258–268. https://doi.org/10.1039/D0EN00858C

    Article  CAS  Google Scholar 

  41. Khoshsafar H, Bagheri H, Rezaei M, Shirzadmehr A, Hajian A, Sepehri Z (2016) Magnetic carbon paste electrode modified with a high-performance composite based on molecularly imprinted carbon nanotubes for sensitive determination of levofloxacin. J Electrochem Soc 163:B422. https://doi.org/10.1149/2.0681608jes

    Article  CAS  Google Scholar 

  42. Huang JY, Bao T, Hu TX, Wen W, Zhang XH, Wang SF (2017) Voltammetric determination of levofloxacin using a glassy carbon electrode modified with poly(o-aminophenol) and graphene quantum dots. Microchim Acta 184:127–135. https://doi.org/10.1007/s00604-016-1982-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Researchers Supporting Project Number (RSP2023R441), King SaudUniversity, Riyadh, Saudi Arabia. The electrochemical part and related work were supported by MingChi University of Technology, Taiwan.

Funding

This work was funded by the Researchers Supporting Project Number (RSP2023R441), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Velusamy Arul, Ponnusamy Arul or Mani Govindasamy.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In this article, the second affiliation was not appended and the corrections in Acknowledgments section was not carried out. Given here the complete affiliations and corrected Acknowledgments.

Supplementary information

ESM 1

(DOC 2050 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arul, V., Sampathkumar, N., Kotteeswaran, S. et al. Biomass derived nitrogen functionalized carbon nanodots for nanomolar determination of levofloxacin in pharmaceutical and water samples. Microchim Acta 190, 242 (2023). https://doi.org/10.1007/s00604-023-05804-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05804-0

Keywords

Navigation