Log in

Au-doped MOFs catalyzed electrochemiluminescence platform coupled with target-induced self-enrichment for detection of synthetic cannabinoid RCS-4

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A ternary composite material with Au, Co-based organic frameworks (ZIF-67) and perylene derivatives (PTCD-cys) has been synthesized for identification of synthetic cannabinoids. Through contact with Au–S, Au-ZIF-67 increased electrochemiluminescence (ECL) sensitivity and stability and efficiently catalyzed the ECL of PTCD-cys. Compared with the ECL response of PTCD-cys monomer, the ECL signal value of the composite material was significantly increased, and the onset potential of Au-ZIF-67/PTCD-cys favorably shifted more than that of PTCD-cys/GCE. When the target cannabinoid molecule RCS-4 appeared, Au-ZIF-67 captured and immobilized it on the sensor surface by adsorption to achieve target-induced self-enrichment of RCS-4. Under optimal conditions, the ECL sensor was found to be linearly related to the logarithm of the RCS-4 concentration ranging from 3.1 × 10−15 to 3.1 × 10−9 mol/L with a detection limit (LOD) of 6.0 × 10−16 mol/L (S/N = 3). The approach had the advantages of being simple to use, having a high sensitivity, a wide detection range, and good stability, making it a novel platform for RSC-4 detection in public health safety monitoring.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lin M, Lee JC, Blake S et al (2021) Broadly neutralizing synthetic cannabinoid vaccines. JACS Au 1:31–40. https://doi.org/10.1021/jacsau.0c00057

    Article  CAS  PubMed  Google Scholar 

  2. Teixeira H, Verstraete A, Proença P et al (2007) Validated method for the simultaneous determination of Δ9-THC and Δ9-THC-COOH in oral fluid, urine and whole blood using solid-phase extraction and liquid chromatography-mass spectrometry with electrospray ionization. Forensic Sci Int 170:148–155. https://doi.org/10.1016/j.forsciint.2007.03.026

    Article  CAS  PubMed  Google Scholar 

  3. Paulke A, Proschak E, Sommer K et al (2016) Synthetic cannabinoids: In silico prediction of the cannabinoid receptor 1 affinity by a quantitative structure-activity relationship model. Toxicol Lett 245:1–6. https://doi.org/10.1016/j.toxlet.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  4. Osorio J, Tangarife H (2009) Cannabis, Una Opción Terapéutica / Cannabis, a therapeutic option. Biosalud VO - 8:166

    Google Scholar 

  5. Li Q, Tang W, Wang Y et al (2015) Electrochemiluminescence immunosensor for ketamine detection based on polyamidoamine-coated carbon dot film. J Solid State Electrochem 19:2973–2980. https://doi.org/10.1007/s10008-015-2913-9

    Article  CAS  Google Scholar 

  6. Lesiak AD, Musah RA, Domin MA, Shepard JRE (2014) DART-MS as a preliminary screening method for “herbal incense”: chemical analysis of synthetic cannabinoids. J Forensic Sci 59:337–343. https://doi.org/10.1111/1556-4029.12354

    Article  CAS  PubMed  Google Scholar 

  7. Kadkhodaei K, Forcher L, Schmid MG (2018) Separation of enantiomers of new psychoactive substances by high-performance liquid chromatography. J Sep Sci 41:1274–1286. https://doi.org/10.1002/jssc.201701239

    Article  CAS  PubMed  Google Scholar 

  8. Rosa-Gastaldo D, Mancin F, Scopano A, Zaramella M (2020) Nanoscale supramolecular probes for the naked-eye detection of illicit drugs. ACS Appl Nano Mater 3:9616–9621. https://doi.org/10.1021/acsanm.0c02370

    Article  CAS  Google Scholar 

  9. Auwärter V (2009) JMS letter. J Mass Spectrom 44:832–837. https://doi.org/10.1002/jms.1558

    Article  CAS  PubMed  Google Scholar 

  10. Gonçalves JL, Alves VL, Aguiar J et al (2019) Synthetic cathinones: an evolving class of new psychoactive substances. Crit Rev Toxicol 49:549–566. https://doi.org/10.1080/10408444.2019.1679087

    Article  CAS  PubMed  Google Scholar 

  11. Bäckberg M, Jönsson KH, Beck O, Helander A (2018) Investigation of drug products received for analysis in the Swedish STRIDA project on new psychoactive substances. Drug Test Anal 10:340–349. https://doi.org/10.1002/dta.2226

    Article  CAS  PubMed  Google Scholar 

  12. Rack-Gomer AL, Liau J, Liu TT (2009) Caffeine reduces resting-state BOLD functional connectivity in the motor cortex. Neuroimage 46:56–63. https://doi.org/10.1016/j.neuroimage.2009.02.001

    Article  PubMed  Google Scholar 

  13. Ciolino LA (2015) Quantitation of synthetic cannabinoids in plant materials using high performance liquid chromatography with UV detection (validated method). J Forensic Sci 60:1171–1181. https://doi.org/10.1111/1556-4029.12795

    Article  CAS  PubMed  Google Scholar 

  14. Choi H, Heo S, Choe S et al (2013) Simultaneous analysis of synthetic cannabinoids in the materials seized during drug trafficking using GC-MS. Anal Bioanal Chem 405:3937–3944. https://doi.org/10.1007/s00216-012-6560-z

    Article  CAS  PubMed  Google Scholar 

  15. Wissenbach DK, Meyer MR, Remane D et al (2011) Drugs of abuse screening in urine as part of a metabolite-based LC-MS n screening concept. Anal Bioanal Chem 400:3481–3489. https://doi.org/10.1007/s00216-011-5032-1

    Article  CAS  PubMed  Google Scholar 

  16. De Castro A, Piñeiro B, Lendoiro E et al (2013) Quantification of selected synthetic cannabinoids and δ9-tetrahydrocannabinol in oral fluid by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1295:99–106. https://doi.org/10.1016/j.chroma.2013.04.035

    Article  CAS  PubMed  Google Scholar 

  17. Nic Daeid N, Savage KA, Ramsay D et al (2014) Development of gas chromatography-mass spectrometry (GC-MS) and other rapid screening methods for the analysis of 16 “legal high” cathinone derivatives. Sci Justice 54:22–31. https://doi.org/10.1016/j.scijus.2013.08.004

    Article  PubMed  Google Scholar 

  18. Gu W, Wang H, Jiao L et al (2020) Single-atom iron boosts electrochemiluminescence. Angew Chemie - Int Ed 59:3534–3538. https://doi.org/10.1002/anie.201914643

    Article  CAS  Google Scholar 

  19. Richter MM (2004) Electrochemiluminescence (ECL). Chem Rev 104:3003–3036. https://doi.org/10.1021/cr020373d

    Article  CAS  PubMed  Google Scholar 

  20. Chen W, Peng H, Huang Z et al (2021) Regulating valence states of gold nanocluster as a new strategy for the ultrasensitive electrochemiluminescence detection of kanamycin. Anal Chem 93:4635–4640. https://doi.org/10.1021/acs.analchem.1c00063

    Article  CAS  PubMed  Google Scholar 

  21. Hao N, Wang K (2016) Recent development of electrochemiluminescence sensors for food analysis. Anal Bioanal Chem 408:7035–7048. https://doi.org/10.1007/s00216-016-9548-2

    Article  CAS  PubMed  Google Scholar 

  22. Li L, Chen B, Luo L et al (2021) Sensitive and selective detection of Hg2+ in tap and canal water via self-enhanced ECL aptasensor based on NH2–Ru@SiO2-NGQDs. Talanta 222:121579. https://doi.org/10.1016/j.talanta.2020.121579

    Article  CAS  PubMed  Google Scholar 

  23. Lv C, He L, Tang J, et al (2021) An in-situ reaction route to molecular level dispersed bisimide and ZnO nanorod hybrids with efficient photo-induced charge transfer. Nanoscale Res Lett 16 https://doi.org/10.1186/s11671-021-03504-3

  24. Wang S, Zhao Y, Wang M et al (2019) Enhancing luminol electrochemiluminescence by combined use of cobalt-based metal organic frameworks and silver nanoparticles and its application in ultrasensitive detection of cardiac troponin i. Anal Chem. https://doi.org/10.1021/acs.analchem.8b05443

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tao Y, Wu HQ, Li JQ et al (2018) Applying MOF+ technique for in situ preparation of a hybrid material for hydrogenation reaction. Dalt Trans 47:14889–14892. https://doi.org/10.1039/c8dt03416h

    Article  CAS  Google Scholar 

  26. Wang JX, Zhuo Y, Zhou Y et al (2016) Ceria doped zinc oxide nanoflowers enhanced luminol-based electrochemiluminescence immunosensor for amyloid-β detection. ACS Appl Mater Interfaces 8:12968–12975. https://doi.org/10.1021/acsami.6b00021

    Article  CAS  PubMed  Google Scholar 

  27. Zhou L, Jiang D, Wang Y et al (2021) A highly-enhanced electrochemiluminescence luminophore generated by a metal-organic framework-linked perylene derivative and its application for ractopamine assay. Analyst 146:2029–2036. https://doi.org/10.1039/d0an02186e

    Article  CAS  PubMed  Google Scholar 

  28. Tan WB, Zhang Y (2005) Surface modification of gold and quantum dot nanoparticles with chitosan for bioapplications. J Biomed Mater Res - Part A 75:56–62. https://doi.org/10.1002/jbm.a.30410

    Article  CAS  Google Scholar 

  29. **a J, Diao K, Zheng Z, Cui X (2017) Porous Au/ZnO nanoparticles synthesised through a metal organic framework (MOF) route for enhanced acetone gas-sensing. RSC Adv 7:38444–38451. https://doi.org/10.1039/c7ra06690b

    Article  CAS  Google Scholar 

  30. Xu B, **ao X, Yang X et al (2005) Large gate modulation in the current of a room temperature single molecule transistor. J Am Chem Soc 127:2386–2387. https://doi.org/10.1021/ja042385h

    Article  CAS  PubMed  Google Scholar 

  31. Meng W, Wen Y, Dai L et al (2018) A novel electrochemical sensor for glucose detection based on Ag@ZIF-67 nanocomposite. Sensors Actuators, B Chem 260:852–860. https://doi.org/10.1016/j.snb.2018.01.109

    Article  CAS  Google Scholar 

  32. Hou B, Wu J (2020) Halloysite nanotubes (HNTs)@ZIF-67 composites - a new type of heterogeneous catalyst for the Knoevenagel condensation reaction. Dalt Trans 49:17621–17628. https://doi.org/10.1039/d0dt03345f

    Article  CAS  Google Scholar 

  33. Yuan R, Ding L, You F et al (2021) B, N co-doped graphene synergistic catalyzed ZnO quantum dots with amplified cathodic electrochemiluminescence for fabricating microcystin-LR aptasensor. Sensors Actuators B Chem 349:130795. https://doi.org/10.1016/j.snb.2021.130795

    Article  CAS  Google Scholar 

  34. Shen X, Liu Y, Pang Y, Yao W (2013) Conjugation of graphene on Au surface by π-π Interaction and click chemistry. Electrochem commun 30:13–16. https://doi.org/10.1016/j.elecom.2013.01.025

    Article  CAS  Google Scholar 

  35. Luo L, Li L, Xu X et al (2017) Determination of pentachlorophenol by anodic electrochemiluminescence of Ru(bpy)32+ based on nitrogen-doped graphene quantum dots as co-reactant. RSC Adv 7:50634–50642. https://doi.org/10.1039/c7ra10247j

    Article  CAS  Google Scholar 

  36. Wen J, Jiang D, Shan X et al (2022) Ternary electrochemiluminescence biosensor based on black phosphorus quantum dots doped perylene derivative and metal organic frameworks as a coreaction accelerator for the detection of chloramphenicol. Microchem J 172:106927. https://doi.org/10.1016/j.microc.2021.106927

    Article  CAS  Google Scholar 

  37. Mahboob S, Nivetha R, Gopinath K et al (2021) Facile synthesis of gold and platinum doped titanium oxide nanoparticles for antibacterial and photocatalytic activity: a photodynamic approach. Photodiagnosis Photodyn Ther 33:102148. https://doi.org/10.1016/j.pdpdt.2020.102148

    Article  CAS  PubMed  Google Scholar 

  38. Zhao X, Zhao K, Sun P (2019) A method to describe the shapes of UV–vis absorbance spectra during the aggregation process of conjugated polymer solutions quantitatively. Chem Phys Lett 730:582–586. https://doi.org/10.1016/j.cplett.2019.06.030

    Article  CAS  Google Scholar 

  39. Kumar N, Rana M, Geiwitz M et al (2022) Rapid, multianalyte detection of opioid metabolites in wastewater. ACS Nano 16:3704–3714. https://doi.org/10.1021/acsnano.1c07094

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (51874050 and 21904014), the Jiangsu Higher Education Institutions of China (19KJB150003), the Natural Science Foundation of Jiangsu Province (BK20190928), the Foundation of Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (BM2012110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhidong Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8242 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Q., Jiang, D., Xu, F. et al. Au-doped MOFs catalyzed electrochemiluminescence platform coupled with target-induced self-enrichment for detection of synthetic cannabinoid RCS-4. Microchim Acta 189, 313 (2022). https://doi.org/10.1007/s00604-022-05397-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05397-0

Keywords

Navigation