Log in

Smart design of exquisite multidimensional multilayered sand-clock-like upconversion nanostructures with ultrabright luminescence as efficient luminescence probes for bioimaging application

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A facile scalable approach is presented for the rational design of multidimensional, multilayered sand-clock-like UCNPs (denoted as UCCKs) bounded with high index facets, with a tunable Nd3+ content, and without a template or multiple complicated reaction steps. This was achieved using the seed-mediated growth and subsequent longitudinal direction epitaxial growth with the assistance of oleic acid and NH4F. The as-formed UCCKs composed of an inner layer (NaYF4:Yb,Er,Ca), an intermediate layer (NaYF4:Yb,Ca), and an outer layer (NaNdF4:Yb,Ca). The outer shell, enriched with Nd3+ sensitizer, augmented the near-infrared (NIR) photon absorption, whereas the intermediate shell, enriched with Yb3+, acted as a bridge for energy transfer from Nd3+ to Er3+ emitter in the inner core alongside with precluding any deleterious energy back-transfer from Er3+ or quenching effect from Nd3+. These unique structural and compositional properties of UCCKs endowed the UCL intensity of UCCKs by 22 and 10 times higher than that of hexagonal UCNP core (NaYF4:Yb,Er,Ca) and hexagonal UCNP core-shell (NaYF4:Yb,Er,Ca@NaYF4:Yb,Ca), respectively. Intriguingly, the UCL intensity increased significantly with increasing the content of Nd3+ in the outer shell. The silica-coated UCCKs were used as excellent long-term luminescence probes for the in vitro bioimaging without any noteworthy cytotoxicity. The presented approach may pave the road for controlling the synthesis of multidimensional UCCKs for various applications.

We developed novel multidimensional multilayered sand-clock-like upconversion nanostructures composed of a spherical inner core (NaYF4:Yb,Er,Ca), hexagonal intermediate shell (NaYF4:Yb,Ca) and two up-down outer shell (NaNdF4:Yb,Ca) with controllable Nd3+ as an efficient and safe probe for bioimaging applications without any quenching effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. **e X, Li Z, Zhang Y, Guo S, Pendharkar AI, Lu M, Huang L, Huang W, Han G (2017) Emerging ≈ 800 nm excited lanthanide-doped upconversion nanoparticles. Small 13(6):1602843

    Article  CAS  Google Scholar 

  2. Chen G, Qiu H, Prasad PN, Chen X (2014) Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev 114(10):5161–5214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wu Z, Cui B (2019) Simultaneous fluorometric and chirality based aptasensing of sulfamethazine by using upconversion nanoparticles and Au@Ag@Au core-shell nanoparticles. Microchim. Acta 186(8):555. https://doi.org/10.1007/s00604-019-3643-y

    Article  CAS  Google Scholar 

  4. Wang W, Zhao M, Wang L, Chen H (2019) Core-shell upconversion nanoparticles of type NaGdF4:Yb,Er@NaGdF4:Nd,Yb and sensitized with a NIR dye are a viable probe for luminescence determination of the fraction of water in organic solvents. Microchim Acta 186(9):630. https://doi.org/10.1007/s00604-019-3744-7

    Article  CAS  Google Scholar 

  5. Rinkel T, Raj AN, Dühnen S, Haase M (2016) Synthesis of 10 nm β-NaYF4:Yb, Er/NaYF4 core/shell upconversion nanocrystals with 5 nm particle cores. Angew Chem Int Ed 55(3):1164–1167

    Article  CAS  Google Scholar 

  6. Homann C, Krukewitt L, Frenzel F, Grauel B, Würth C, Resch-Genger U, Haase M (2018) NaYF4:Yb, Er/NaYF4 core/shell nanocrystals with high upconversion luminescence quantum yield. Angew Chem Int Ed 57(28):8765–8769

    Article  CAS  Google Scholar 

  7. Schneider L, Rinkel T, Voß B, Chrobak A, Klare JP, Neethling J, Olivier J, Schaniel D, Bendeif E-E, Bondino F (2016) Characterization of multifunctional β-NaEuF4/NaGdF4 core–shell nanoparticles with narrow size distribution. Nanoscale 8(5):2832–2843

    Article  CAS  PubMed  Google Scholar 

  8. Rinkel T, Nordmann J, Raj AN, Haase M (2014) Ostwald-ripening and particle size focussing of sub-10 nm NaYF4 upconversion nanocrystals. Nanoscale 6(23):14523–14530

    Article  CAS  PubMed  Google Scholar 

  9. Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE, Requicha AA (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2(4):229–232

    Article  CAS  PubMed  Google Scholar 

  10. Shen J, Chen G, Vu AM, Fan W, Bilsel OS, Chang CC, Han G (2013) Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm. Adv Opt Mater 1(9):644–650

    Article  Google Scholar 

  11. Liang L, Qin X, Zheng K, Liu X (2018) Energy flux manipulation in upconversion nanosystems. Acc Chem Res 52(1):228–236

    Article  PubMed  CAS  Google Scholar 

  12. **e X, Gao N, Deng R, Sun Q, Xu QH, Liu X (2013) Mechanistic investigation of photon upconversion in Nd3+-sensitized core–shell nanoparticles. J Am Chem Soc 135(34):12608–12611

    Article  CAS  PubMed  Google Scholar 

  13. Zhong Y, Tian G, Gu Z, Yang Y, Gu L, Zhao Y, Ma Y, Yao J (2014) Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles. Adv Mater 26(18):2831–2837

    Article  CAS  PubMed  Google Scholar 

  14. Zhan Q, Qian J, Liang H, Somesfalean G, Wang D, He S, Zhang Z, Andersson-Engels S (2011) Using 915 nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation. ACS Nano 5(5):3744–3757

    Article  CAS  PubMed  Google Scholar 

  15. Wu S, Meng Z, Sun X, Zhang S (2017) Morphology control of the NaGdF4:Yb, Tm@ NaGdF4 core–shell nanostructure by tailoring the ratio of core to shell. CrystEngComm 19(34):5022–5027

    Article  CAS  Google Scholar 

  16. Wu S, Sun X, Meng Z, Zhang S (2017) Impurity induced controlled growth of a NaGdF4 nanostructure by a core–shell approach. CrystEngComm 19(26):3600–3606

    Article  CAS  Google Scholar 

  17. Xu B, Zhang X, Huang W, Yang Y, Ma Y, Gu Z, Zhai T, Zhao Y (2016) Nd3+ sensitized dumbbell-like upconversion nanoparticles for photodynamic therapy application. J Mater Chem B 4(16):2776–2784

    Article  CAS  PubMed  Google Scholar 

  18. Wen HQ, Peng HY, Liu K, Bian MH, Xu YJ, Dong L, Yan X, Xu WP, Tao W, Shen JL (2017) Sequential growth of NaYF4:Yb/Er@NaGdF4 nanodumbbells for dual-modality fluorescence and magnetic resonance imaging. ACS Appl Mater Interfaces 9(11):9226–9232

    Article  CAS  PubMed  Google Scholar 

  19. Abualrejal MM, Eid K, Tian R, Liu L, Chen H, Abdullah AM, Wang Z (2019) Rational synthesis of three-dimensional core–double shell upconversion nanodendrites with ultrabright luminescence for bioimaging application. Chem Sci 10(32):7591–7599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu D, Xu X, Du Y, Qin X, Zhang Y, Ma C, Wen S, Ren W, Goldys EM, Piper JA (2016) Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals. Nat Commun 7:10254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ding BB, Peng HY, Qian HS, Zheng L, Yu SH (2016) Unique upconversion core–shell nanoparticles with tunable fluorescence synthesized by a sequential growth process. Adv Mater Interfaces 3(3):1500649

    Article  CAS  Google Scholar 

  22. Johnson NJ, Korinek A, Dong C, van Veggel FC (2012) Self-focusing by Ostwald ripening: a strategy for layer-by-layer epitaxial growth on upconverting nanocrystals. J Am Chem Soc 134(27):11068–11071

    Article  CAS  PubMed  Google Scholar 

  23. Niu W, Zhang L, Xu G (2013) Seed-mediated growth of noble metal nanocrystals: crystal growth and shape control. Nanoscale 5(8):3172–3181

    Article  CAS  PubMed  Google Scholar 

  24. Zhou L, Wang R, Yao C, Li X, Wang C, Zhang X, Xu C, Zeng A, Zhao D, Zhang F (2015) Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular map** of cancer biomarkers. Nat Commun 6:6938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li X, Wang R, Zhang F, Zhou L, Shen D, Yao C, Zhao D (2013) Nd3+ sensitized up/down converting dual-mode nanomaterials for efficient in-vitro and in-vivo bioimaging excited at 800 nm. Sci Rep 3:3536

    Article  PubMed  PubMed Central  Google Scholar 

  26. Han S, Deng R, **e X, Liu X (2014) Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Angew Chem Int Ed 53(44):11702–11715

    Article  CAS  Google Scholar 

  27. Wang Y-F, Liu G-Y, Sun L-D, **ao J-W, Zhou J-C, Yan C-H (2013) Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect. ACS Nano 7(8):7200–7206

    Article  CAS  PubMed  Google Scholar 

  28. Liu B, Chen Y, Li C, He F, Hou Z, Huang S, Zhu H, Chen X, Lin J (2015) Poly (acrylic acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery. Adv Funct Mater 25(29):4717–4729

    Article  CAS  Google Scholar 

  29. Ye X, Collins JE, Kang Y, Chen J, Chen DT, Yodh AG, Murray CB (2010) Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly. Proc Natl Acad Sci U S A 107(52):22430–22435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lu F, Yang L, Ding Y, Zhu JJ (2016) Highly emissive Nd3+-sensitized multilayered upconversion nanoparticles for efficient 795 nm operated photodynamic therapy. Adv Funct Mater 26(26):4778–4785

    Article  CAS  Google Scholar 

  31. Del Rosal B, Pérez-Delgado A, Misiak M, Bednarkiewicz A, Vanetsev AS, Orlovskii Y, Jovanović DJ, Dramićanin MD, Rocha U, Upendra Kumar K (2015) Neodymium-doped nanoparticles for infrared fluorescence bioimaging: the role of the host. J Appl Phys 118(14):143104

    Article  CAS  Google Scholar 

  32. Xu W, Song H, Chen X, Wang H, Cui S, Zhou D, Zhou P, Xu S (2015) Upconversion luminescence enhancement of Yb3+, Nd3+ sensitized NaYF4 core–shell nanocrystals on Ag grating films. Chem Commun 51(8):1502–1505

    Article  CAS  Google Scholar 

  33. Liu B, Li C, Yang D, Hou Z, Ma P, Cheng Z, Lian H, Huang S, Lin J (2014) Upconversion-luminescent core/mesoporous-silica-shell-structured β-NaYF4:Yb3+, Er3+@SiO2@mSiO2 composite nanospheres: fabrication and drug-storage/release properties. Eur J Inorg Chem 2014(11):1906–1913

    Article  CAS  Google Scholar 

  34. Li X, Guo Z, Zhao T, Lu Y, Zhou L, Zhao D, Zhang F (2016) Filtration shell mediated power density independent orthogonal excitations–emissions upconversion luminescence. Angew Chem Int Ed 55(7):2464–2469

    Article  CAS  Google Scholar 

  35. Wiesholler L, Frenzel F, Grauel B, Würth C, Resch-Genger U, Hirsch T (2019) Yb, Nd, Er-doped upconversion nanoparticles: 980 nm versus 808 nm excitation. Nanoscale 11(28):13440–13449

    Article  CAS  PubMed  Google Scholar 

  36. Chen G, Ågren H, Ohulchanskyy TY, Prasad PN (2015) Light upconverting core–shell nanostructures: nanophotonic control for emerging applications. Chem Soc Rev 44(6):1680–1713

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Y, Yu Z, Li J, Ao Y, Xue J, Zeng Z, Yang X, Tan TTY (2017) Ultrasmall-superbright neodymium-upconversion nanoparticles via energy migration manipulation and lattice modification: 808 nm-activated drug release. ACS Nano 11(3):2846–2857

    Article  CAS  PubMed  Google Scholar 

  38. Lei L, Chen D, Huang P, Xu J, Zhang R, Wang Y (2013) Modifying the size and uniformity of upconversion Yb/Er:NaGdF4 nanocrystals through alkaline-earth do**. Nanoscale 5(22):11298–11305

    Article  CAS  PubMed  Google Scholar 

  39. Chen G, Yang C, Prasad PN (2013) Nanophotonics and nanochemistry: controlling the excitation dynamics for frequency up-and down-conversion in lanthanide-doped nanoparticles. Acc Chem Res 46(7):1474–1486

    Article  CAS  PubMed  Google Scholar 

  40. Lei L, Chen D, Xu J, Zhang R, Wang Y (2014) Highly intensified upconversion luminescence of Ca(2+)-doped Yb/Er:NaGdF (4) nanocrystals prepared by a solvothermal route. Chem Asian J 9(3):728

    Article  CAS  PubMed  Google Scholar 

  41. Zhao C, Kong X, Liu X, Tu L, Wu F, Zhang Y, Liu K, Zeng Q, Zhang H (2013) Li+ ion do**: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles. Nanoscale 5(17):8084–8089

    Article  CAS  PubMed  Google Scholar 

  42. Fischer S, Bronstein N, Swabeck J, Chan E, Alivisatos A (2016) Precise tuning of surface quenching for luminescence enhancement in core-shell lanthanide-doped nanocrystals. Nano Lett 16(11):7241–7247

    Article  CAS  PubMed  Google Scholar 

  43. Siefe C, Mehlenbacher R, Peng C, Zhang Y, Fischer S, Lay A, McLellan C, Alivisatos A, Chu S, Dionne J (2019) Sub-20 nm core-shell-shell nanoparticles for bright upconversion and enhanced Forster resonant energy transfer. J Am Chem Soc 141(42):16997–17005

    Article  CAS  PubMed  Google Scholar 

  44. Tian R, Zhang H, Chen H, Liu G, Wang Z (2018) Uncovering the binding specificities of lectins with cells for precision colorectal cancer diagnosis based on multimodal imaging. Adv Sci 5(6):1800214

    Article  CAS  Google Scholar 

  45. Liu F, Zhao Q, You H, Wang Z (2013) Synthesis of stable carboxy-terminated NaYF4:Yb3+,Er3+@SiO2 nanoparticles with ultrathin shell for biolabeling applications. Nanoscale 5(3):1047–1053

    Article  CAS  PubMed  Google Scholar 

  46. Mah SK, Chung IJ (1995) Effects of dimethyldiethoxysilane addition on tetraethylorthosilicate sol-gel process. J Non-Cryst Solids 183(3):252–259

    Article  CAS  Google Scholar 

  47. Lin J, Yu M, Lin C, Liu X (2007) Multiform oxide optical materials via the versatile Pechini-type sol−gel process: synthesis and characteristics. The J Phys Chem C 111(16):5835–5845

    Article  CAS  Google Scholar 

  48. Shan J, Ju Y (2007) Controlled synthesis of lanthanide-doped Na YF4 upconversion nanocrystals via ligand induced crystal phase transition and silica coating. Appl Phys Lett 91(12):123103

    Article  CAS  Google Scholar 

  49. Li Z, Zhang Y, Shuter B, Muhammad Idris N (2009) Hybrid lanthanide nanoparticles with paramagnetic shell coated on upconversion fluorescent nanocrystals. Langmuir 25(20):12015–12018

    Article  CAS  PubMed  Google Scholar 

  50. Hu Y, Wu B, ** Q, Wang X, Li Y, Sun Y, Huo J, Zhao X (2016) Facile synthesis of 5 nm NaYF4:Yb/Er nanoparticles for targeted upconversion imaging of cancer cells. Talanta 152:504–512

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the CAS-TWAS president’s fellowship award for Ph.D. Students (series No2017-166). We also acknowledge the financial support from the National Natural Science Foundation of China (Grant no. 61901438).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Zhang or Zhenxin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 6957 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abualrejal, M.M.A., Eid, K., Abdullah, A.M. et al. Smart design of exquisite multidimensional multilayered sand-clock-like upconversion nanostructures with ultrabright luminescence as efficient luminescence probes for bioimaging application. Microchim Acta 187, 527 (2020). https://doi.org/10.1007/s00604-020-04521-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04521-2

Keywords

Navigation