Log in

Preparation of bottlebrush polymer–modified magnetic graphene as immobilized metal ion affinity adsorbent for purification of hemoglobin from blood samples

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An immobilized metal affinity (IMA) adsorbent was prepared by grafting bottlebrush polymer pendant with iminodiacetic acid (IDA) from the surface of polydopamine (PDA)-coated magnetic graphene oxide (magGO), via surface-initiated atom transfer radical polymerization (SI-ATRP). Poly(hydroxyethyl methacrylate) (PHEMA) was grafted firstly from the PDA-coated magGO as the backbone, and then poly(glycidyl methacrylate) was grafted from the PHEMA chains via the second SI-ATRP to afford the bottlebrush polymer–grafted magGO Thereafter, IDA was anchored on the nanocomposites to produce the IMA adsorbent after chelating copper ions. The adsorbent was characterized by various physical and physicochemical methods. Its adsorption properties were evaluated by using histidine-rich proteins (bovine hemoglobin, BHb) and other proteins (lysozyme and cytochrome-C). The results show that its maximum adsorption capacity to BHb was 378.6 mg g−1, and the adsorption equilibrium can be quickly reached within 1 h. The adsorbent has excellent reproducibility and reusability. It has been applied to selectively purify hemoglobin from human whole blood, indicating its potential in practical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jian GQ, Liu YX, He XW, Chen LX, Zhang YK (2012) Click chemistry: a new facile and efficient strategy for the preparation of Fe3O4 nanoparticles covalently functionalized with IDA-Cu and their application in the depletion of abundant protein in blood samples. Nanoscale 4:6336–6342. https://doi.org/10.1039/C2NR31430D

    Article  CAS  Google Scholar 

  2. Ding C, Ma XD, Yao X, Jia L (2015) Facile synthesis of copper (II)-decorated magnetic particles for selective removal of hemoglobin from blood samples. J Chromatogr A 1424:18–26 https://doi.org/10.1016/j.chroma.2015.11.004

    Article  CAS  Google Scholar 

  3. Liang YX, Liu JW, Wang LL, Wan Y, Shen JW, Bai Q (2019) Metal affinity-carboxymethyl cellulose functionalized magnetic graphene composite for highly selective isolation of histidine-rich proteins. Talanta 195:381–389. https://doi.org/10.1016/j.talanta.2018.11.074

    Article  CAS  Google Scholar 

  4. Verduzco R, Li XY, Pesek SL, Stein GE (2015) Structure, function, self-assembly, and applications of bottlebrush copolymers. Chem Soc Rev 44:2405–2420. https://doi.org/10.1039/C4CS00329B

    Article  CAS  Google Scholar 

  5. Cho S, Son J, Kim I, Ahn H, Jang HS, Joo SH, Park KH, Lee E, Kim Y, Ahn SK (2019) Asymmetric polystyrene-polylactide bottlebrush random copolymers: synthesis, self-assembly and nanoporous structures. Polymer 175:49–56. https://doi.org/10.1016/j.polymer.2019.04.075

    Article  CAS  Google Scholar 

  6. Yin ZJ, Wu ZQ, Lin F, Qi QY, Xu XN, Zhao X (2017) A supramolecular bottlebrush polymer assembled on the basis of cucurbit [8]uril-encapsulation-enhanced donor–acceptor interaction. Chin Chem Lett 28:1167–1171. https://doi.org/10.1016/j.cclet.2017.03.029

    Article  CAS  Google Scholar 

  7. Tu ZX, Guday G, Adeli M, Haag R (2018) Multivalent interactions between 2D nanomaterials and biointerfaces. Adv Mater 30(1):706–709. https://doi.org/10.1002/adma.201706709

    Article  CAS  Google Scholar 

  8. Wan H, Huang JF, Liu ZS, Li JN, Zhang WB, Zou HF (2015) A dendrimer-assisted magnetic graphene-silica hydrophilic composite for efficient and selective enrichment of glycopeptides from the complex sample. Chem Commun 51:9391–9394. https://doi.org/10.1039/C5CC01980J

    Article  CAS  Google Scholar 

  9. Li DJ, Li Y, Li XL, Bie ZJ, Pan XH, Zhang Q, Liu Z (2015) A high boronate avidity monolithic capillary for the selective enrichment of trace glycoproteins. J Chromatogr A 1384:88–96. https://doi.org/10.1016/j.chroma.2015.01.050

    Article  CAS  Google Scholar 

  10. Li CY, Yuan JX, Wang CZ, Wei YM (2018) Molecular bottlebrush polymer modified magnetic adsorbents with high physicochemical selectivity and unique shape selectivity. J Chromatogr A1564:16–24. https://doi.org/10.1016/j.chroma.2018.06.019

    Article  CAS  Google Scholar 

  11. Xu HH, Wang CZ, Wei YM (2018) A boronate affinity restricted-access material with external hydrophilic bottlebrush polymers for pretreatment of cis-diols in biological matrices. Chin Chem Lett 29:521–523. https://doi.org/10.1016/j.cclet.2017.08.056

    Article  CAS  Google Scholar 

  12. Zhao M, Deng CH, Zhang XM (2013) Synthesis of polydopamine-coated magnetic graphene for Cu2+ immobilization and application to the enrichment of low-concentration peptides for mass spectrometry analysis. ACS Appl Mater Interfaces 5(24):13104–13112. https://doi.org/10.1021/am40410421

    Article  CAS  Google Scholar 

  13. Yan YH, Zheng ZF, Deng CH, Li Y, Zhang XM, Yang PY (2013) Hydrophilic polydopamine-coated graphene for metal ion immobilization as a novel immobilized metal ion affinity chromatography platform for phosphoproteome analysis. Anal Chem 85:8483–8487. https://doi.org/10.1021/ac401668e

    Article  CAS  Google Scholar 

  14. Deng YN, Gao Q, Ma J, Wang CZ, Wei YM (2018) Preparation of a boronate affinity material with ultrahigh binding capacity for cis-diols by grafting polymer brush from polydopamine-coated magnetized graphene oxide. Microchim Acta 185:189. https://doi.org/10.1007/s00604-018-2732-7

    Article  CAS  Google Scholar 

  15. Wang CZ, Li M, Xu HH, Wei YM (2014) Preparation of an internal surface reversed-phase restricted-access material for the analysis of hydrophobic molecules in biological matrices. J Chromatogr A 1343:195–199. https://doi.org/10.1016/j.chroma.2014.03.074

    Article  CAS  Google Scholar 

  16. Deng YN, Shen JW, Liu JW, Wei YM, Wang CZ (2018) A magnetic adsorbent grafted with pendant naphthyl polymer brush for enrichment of the nonsteroidal anti-inflammatory drugs indomethacin and diclofenac. Microchim Acta 185:370. https://doi.org/10.1007/s00604-018-2913-4

    Article  CAS  Google Scholar 

  17. Wang JW, He XW, Chen LX, Zhang YK (2016) Boronic acid functionalized magnetic nanoparticles synthesized by atom transfer radical polymerization and their application for selective enrichment of glycoproteins. RSC Adv 6:47055–47061. https://doi.org/10.1039/c6ra05848e

    Article  CAS  Google Scholar 

  18. An XY, He XW, Chen LX, Zhang YK (2016) Graphene oxide based boronate polymer brushes via surface initiated atom transfer radical polymerization for the selective enrichment of glycoproteins. J Mater Chem B 4:6125–6133. https://doi.org/10.1039/C6TB01489E

    Article  CAS  Google Scholar 

  19. Zhang JC, Chen YNUptake of Fe(III), Ag(I), Ni(II) and Cu(II) by salicylic acid-type chelating resin prepared via surface initiated atom transfer radical polymerization. RSC Adv 6:69370–69380. https://doi.org/10.1039/c6ra11101g

  20. Bo CM, Wang CZ, Wei YM (2017) Preparation and evaluation of diblock copolymer-grafted silica by sequential surface initiated atom transfer radical polymerization for reverse-phase/ion-exchange mixed-mode chromatography. J Sep Sci 40:4700–4708. https://doi.org/10.1016/j.chroma.2018.06.019

    Article  CAS  Google Scholar 

  21. Sulkowski E (1989) The saga of IMAC and MIT. BioEssays 10:170–175. https://doi.org/10.1002/bies.950100508

    Article  CAS  Google Scholar 

  22. Vancan S, Miranda EA, Bueno SMA (2002) IMAC of human IgG: studies with IDA-immobilized copper, nickel, zinc, and cobalt ions and different buffer systems. Process Biochem 37:573–579. https://doi.org/10.1016/S0032-9592(01)00242-4

    Article  CAS  Google Scholar 

  23. Du KF, Liu XH, Li SK, Qiao LZ, Ai H (2018) Synthesis of Cu2+ chelated cellulose/magnetic hydroxyapatite particles hybrid beads and their potential for high specific adsorption of histidine-rich proteins. ACS Sustain Chem Eng 6(9):11578–11586. https://doi.org/10.1021/acssuschemeng.8b01699

    Article  CAS  Google Scholar 

  24. Shi W, Cao HH, Shen YQ, Song CF, Li DH, Zhang Y, Ge DT (2009) Chemically modified PPyCOOH microtubes as an affinity matrix for protein purification. Macromol Chem Phys 210:1379–1386. https://doi.org/10.1002/macp.200900186

    Article  CAS  Google Scholar 

  25. Ma ZY, Guan YP, Liu XQ, Liu HZ (2005) Preparation and characterization of micronsized non-porous magnetic polymer microspheres with immobilized metal affinity ligands by modified suspension polymerization. J Appl Polym Sci 96:2174–2180. https://doi.org/10.1002/app.21688

    Article  CAS  Google Scholar 

  26. Zhang M, Cheng D, He XW, Chen LX, Zhang YK (2010) Magnetic silica-coated submicrospheres with immobilized metal ions for the selective removal of bovine hemoglobin from bovine blood. Chem Asian J 5:1332–1340. https://doi.org/10.1002/asia.200900463

    Article  CAS  Google Scholar 

  27. Li WS, Yang LR, Zhou HC, Li XP, Wang FC, Yang XF, Liu HZ (2013) Gas-assisted superparamagnetic extraction for selective separation of binary mixed proteins. Ind Eng Chem Res 52:16314–16320. https://doi.org/10.1021/ie401012c

    Article  CAS  Google Scholar 

  28. Ma ZY, Guan YP, Liu HZ (2005) Synthesis of monodisperse nonporous crosslinked poly(glycidyl methacrylate) particles with metal affinity ligands for protein adsorption. Polym Int 54:1502–1507. https://doi.org/10.1002/pi.1875

    Article  CAS  Google Scholar 

  29. Altıntas EB, Türkmen D, Karakoc V, Denizli A (2011) Hemoglobin binding from human blood hemolysate with poly-(glycidyl methacrylate) beads. Colloids Surf B 85:235–240. https://doi.org/10.1016/j.colsurfb.2011.02.034

    Article  CAS  Google Scholar 

  30. Liu JW, Zhang Y, Chen XW, Wang JH (2014) Graphene oxide−rare earth metal-organic framework composites for the selective isolation of hemoglobin. ACS Appl Mater Interfaces 6:10196–10204. https://doi.org/10.1021/am503298v

    Article  CAS  Google Scholar 

  31. Gao RX, Cui XH, Hao Y, He GY, Zhang M, Tang YH (2016) Preparation of Cu2+-mediated magnetic imprinted polymers for the selective sorption of bovine hemoglobin. Talanta 150:46–53. https://doi.org/10.1016/j.talanta.2015.12.017

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation in China (Nos. 21575114 and 21775121), Shaanxi Provincial Key Research and Development Program (2018KW-033), and **’an Science and Technology Plan Project (201805041YD19CG25(3)).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiwei Shen or Chaozhan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1436 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wu, D., Shen, J. et al. Preparation of bottlebrush polymer–modified magnetic graphene as immobilized metal ion affinity adsorbent for purification of hemoglobin from blood samples. Microchim Acta 187, 472 (2020). https://doi.org/10.1007/s00604-020-04443-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04443-z

Keywords

Navigation