Log in

A triple-channel sensing array for protein discrimination based on multi-photoresponsive g-C3N4

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Graphitic carbon nitride (g-C3N4) as an outstanding photoresponsive nanomaterial has been widely used in biosensing. Other than the conventional single channel sensing mode, a triple-channel sensing array was developed for high discrimination of proteins based on the photoresponsive g-C3N4. Besides the photoluminescence and Rayleigh light scattering features of g-C3N4, we exploit the new photosensitive colorimetry of g-C3N4 as the third channel optical input. The triple-channel optical behavior of g-C3N4 can be synchronously changed after interaction with the protein, resulting in the distinct response patterns related to each specific protein. Such a triple-channel sensing array is demonstrated for highly discriminative and precise identification of nine proteins (hemoglobin, trypsin, lysozyme, cytochrome c, horseradish peroxidase, transferrin, human serum albumin, pepsin, and myoglobin) at 1 μM concentration levels with 100% accuracy. It also can discriminate proteins being present at different concentration and protein mixtures with different content ratios. The practicability of this sensor array is validated by high accuracy identification of nine proteins in human urine samples. This indicates that the array has a great potential in terms of analyzing biological fluids.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li Z, Askim JR, Suslick SK (2019) The optoelectronic nose: colorimetric and fluorometric sensor arrays. Chem Rev 119:231–292

    Article  CAS  Google Scholar 

  2. Zhao MX, Yu HL, He Y (2019) A dynamic multichannel colorimetric sensor array for highly effective discrimination of ten explosives. Sens Actuat B Chem 283:329–333

    Article  CAS  Google Scholar 

  3. Yang HM, Jie X, Wang L, Zhang Y, Wang M, Wei W (2018) An array consisting of glycosylated quantum dots conjugated to MoS2 nanosheets for fluorometric identification and quantitation of lectins and bacteria. Microchim Acta 18:512

    Article  Google Scholar 

  4. Wang YH, **a H, Huang KJ, Wu X, Ma YY, Deng R, Lu YF, Han ZW (2018) Ultrasensitive determination of thrombin by using an electrode modified with WSe2 and gold nanoparticles, aptamer-thrombin-aptamer sandwiching, redox cycling, and signal enhancement by alkaline phosphatase. Microchim Acta 185:502

    Article  Google Scholar 

  5. **e XC, Huang KJ, Wu X (2018) Metal–organic framework derived hollow materials for electrochemical energy storage. J Mater Chem A 6:6754–6771

    Article  CAS  Google Scholar 

  6. Zhu PJ, Zhang YY, Xu SX, Zhang XF (2019) G-quadruplex-assisted enzyme strand recycling for amplified label-free fluorescent detection of UO22+. Chin Chem Lett 30:58–62

    Article  CAS  Google Scholar 

  7. Hagleitner C, Hierlemann A, Lange D, Kummer A, Kerness N, Brand O, Baltes H (2001) Smart single-chip gas sensor microsystem. Nature 414:293–296

    Article  CAS  Google Scholar 

  8. Wu P, Miao LN, Wang HF, Shao XG, Yan XP (2011) A multidimensional sensing device for the discrimination of proteins based on manganese-doped ZnS quantum dots. Angew Chem Int Ed 50:8118–8121

    Article  CAS  Google Scholar 

  9. Li CH, Wu P, Hou XD (2016) Plasma-assisted quadruple-channel optosensing of proteins and cells with Mn-doped ZnS quantum dots. Nanoscale 8:4291–4298

    Article  CAS  Google Scholar 

  10. Leng YM, Fu Y, Lu ZW, Sang ZP, Liu KC, Du CX, Ma LF (2019) Sub-10-nm multicolored gold nanoparticles for colorimetric determination of antibiotics via formation of interlocking rings. Microchim Acta 186:803

    Article  CAS  Google Scholar 

  11. Zhang XD, **e X, Wang H, Zhang JJ, Pan BC, **e Y (2013) Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J Am Chem Soc 135:18–21

    Article  CAS  Google Scholar 

  12. Zhang P, Sun D, Cho A, Weon S, Lee S, Lee J, Han JW, Kim DP, Choi W (2019) Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat Commun 10:940–953

    Article  Google Scholar 

  13. Xu H, Yan J, She XJ, Xu L, **a JX, Xu YG, Song YH, Huang LY, Li HM (2014) Graphene-analogue carbon nitride: novel exfoliation synthesis and its application in photocatalysis and photoelectrochemical selective detection of trace amount of Cu2+. Nanoscale 6:1406–1415

    Article  Google Scholar 

  14. Oh JR, Yoo J, Kim SY, Lee YJ, Kim DW, Park S (2015) Oxidized carbon nitrides: water-dispersible, atomically thin carbon nitride-based nanodots and their performances as bioimaging probes. Chem Eur J 21:6241–6246

    Article  CAS  Google Scholar 

  15. Zhang XD, Wang HX, Wang H, Zhang Q, **e JF, Tian YP, Wang J, **e Y (2014) Single-layered graphitic-C3N4 quantum dots for two-photon fluorescence imaging of cellular nucleus. Adv Mater 26:4438–4443

    Article  CAS  Google Scholar 

  16. Tian JQ, Liu Q, Ge CJ, **ng ZC, Asiri AM, Al-Youbi AO, Sun XP (2013) Ultrathin graphitic carbon nitride nanosheets: a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application. Nanoscale 5:8921–8924

    Article  CAS  Google Scholar 

  17. Tang YR, Song HJ, Su YY, Lv Y (2013) Turn-on persistent luminescence probe based on graphitic carbon nitride for imaging detection of biothiols in biological fluids. Anal Chem 85:11876–11884

    Article  CAS  Google Scholar 

  18. Cao SW, Low JX, Yu JG, Jaroniec M (2015) Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater 27:2150–2176

    Article  CAS  Google Scholar 

  19. Wang JC, Cui CX, Kong QQ, Ren CY, Li ZJ, Qu LB, Zhang YP, Jiang K (2018) Mn-doped g-C3N4 nanoribbon for efficient visible-light photocatalytic water splitting coupling with methylene blue degradation. ACS Sustain Chem Eng 6:8754–8761

    Article  CAS  Google Scholar 

  20. Kang YY, Yang YQ, Yin LC, Kang XD, Wang LZ, Liu G, Cheng HM (2016) Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis. Adv Mater 28:6471–6477

    Article  CAS  Google Scholar 

  21. Ma ZF, Zhang MC, Jia XD, Bai J, Ruan YD, Wang C, Sun XP, Jiang X (2016) Fe(III)-doped two-dimensional C3N4 nanofusiform: a new O2-evolving and mitochondria-targeting photodynamic agent for MRI and enhanced antitumor therapy. Small 12:5477–5487

    Article  CAS  Google Scholar 

  22. Wan H, Zhang Y, Zhang WB, Zou HF (2015) Robust two-photon visualized nanocarrier with dual targeting ability for controlled chemo-photodynamic synergistic treatment of cancer. ACS Appl Mater Interfaces 7:9608–9618

    Article  CAS  Google Scholar 

  23. Zhou CY, Huang DL, Xu P, Zeng GM, Huang JH, Shi TZ, Lai C, Zhang C, Cheng M, Lu Y, Duan A (2019) Efficient visible light driven degradation of sulfamethazine and tetracycline by salicylic acid modified polymeric carbon nitride via charge transfer. Chem Eng J 370:1077–1086

    Article  CAS  Google Scholar 

  24. Sidiki A, Raizada P, Shandilya P, Jong DY, Lim JH, Singh P (2018) Review on fabrication of graphitic carbon nitride based efficient nanocomposites for photodegradation of aqueous phase organic pollutants. J Ind Eng Chem 67:28–51

    Article  Google Scholar 

  25. Lin LS, Cong ZX, Li J, Ke KM, Guo SS, Yang HH, Chen GN (2014) Graphitic-phase C3N4 nanosheets as efficient photosensitizers and pH-responsive drug nanocarriers for cancer imaging and therapy. J Mater Chem 2:1031–1037

    Article  CAS  Google Scholar 

  26. Ju EG, Dong K, Chen ZW, Liu Z, Liu CQ, Huang YY, Wang ZZ, Pu F, Ren JS, Qu XG (2016) Copper(II)-graphitic carbon nitride triggered synergy: improved ROS generation and reduced glutathione levels for enhanced photodynamic therapy. Angew Chem Int Ed 55:11467–11471

    Article  CAS  Google Scholar 

  27. Habibey R, Ajami M, Ebrahimi SA, Babakoohi S, Pazoki-Toroudi H (2010) Nitric oxide and renal protection in morphine-dependent rats. Free Radical Bio Med 49:1109–1118

    Article  CAS  Google Scholar 

  28. Movahedian Ataar A, Eshraghi A, Asgari S, Naderi G, Badiee A (2011) Antioxidant effect of Ziziphus vulgaris, Portulaca oleracea, Berberisintegerima and Gundelia tournefortti on lipid peroxidation, Hb glycosylation and red blood cell hemolysis. J Med Plants Res 10:80–88

    Google Scholar 

  29. Wang H, Jiang SL, Chen SC, Li DD, Zhang XD, Shao W, Sun XS, **e JF, Zhao Z, Zhang Q, Tian YP, **e Y (2016) Enhanced singlet oxygen generation in oxidized graphitic carbon nitride for organic synthesis. Adv Mater 28:6940–6945

    Article  CAS  Google Scholar 

  30. Savateev A, Ghosh I, Konig B, Antonietti M (2018) Photoredox catalytic organic transformations using heterogeneous carbon nitrides. Angew Chem Int Ed 57:15936–15937

    Article  CAS  Google Scholar 

  31. Wu YH, Chen Q, Liu S, **ao H, Zhang ML, Zhang XF (2019) Surface molecular imprinting on g-C3N4 photooxidative nanozyme for improved colorimetric biosensing. Chin Chem Lett 30:2186–2190

    Article  CAS  Google Scholar 

  32. Chen LC, Huang DJ, Ren SY, Dong TQ, Chi YW, Chen GN (2013) Preparation of graphite-like carbon nitride nanoflake film with strong fluorescent and electrochemiluminescent activity. Nanoscale 5:225–230

    Article  CAS  Google Scholar 

  33. Qiu H, Pu F, Ran X, Liu CQ, Ren JS, Qu XG (2018) Nanozyme as artificial receptor with multiple readouts for pattern recognition. Anal Chem 90:11775–11779

    Article  CAS  Google Scholar 

  34. Huang CC, Bai H, Li C, Shi GQ (2011) A graphene oxide/hemoglobin composite hydrogel for enzymatic catalysis in organic solvents. Chem Commun 47:4962–4964

    Article  CAS  Google Scholar 

  35. Guo XR, Yue GQ, Huang JZ, Liu C, Zeng Q, Wang LS (2018) Label-free simultaneous analysis of Fe(III) and ascorbic acid using fluorescence switching of ultrathin graphitic carbon nitride nanosheets. ACS Appl Mater Interfaces 10:26118–26127

    Article  CAS  Google Scholar 

  36. Song YJ, Wei WL, Qu XG (2011) Colorimetric biosensing using smart materials. Adv Mater 23:4215–4236

    Article  CAS  Google Scholar 

  37. Ahmadi F, Asgharloo H, Sadeghi S, Gharehbagh-Aghababa V, Adibi H (2009) Post-derivatization procedure for determination of hippuric acid after extraction by an automated micro solid phase extraction system and monitoring by gas chromatography. J Chromatogr B 877:2945–2951

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We also want to thank Analytical & Testing Center of Chongqing University for help in TEM and photocurrent data collection, respectively.

Funding

Financial support for this project was provided by the National Natural Science Foundation of China [No. 21605010] and China Postdoctoral Science Foundation [No. 2018M633631XB].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **nfeng Zhang or Yurong Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/ xxxxx.

ESM 1

(DOCX 4549 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, Y., Liu, S., Cai, Y. et al. A triple-channel sensing array for protein discrimination based on multi-photoresponsive g-C3N4. Microchim Acta 187, 449 (2020). https://doi.org/10.1007/s00604-020-04396-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04396-3

Keywords

Navigation