Log in

Red-emission carbon dots-quercetin systems as ratiometric fluorescent nanoprobes towards Zn2+ and adenosine triphosphate

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Carbon dots (CDs) emitting red fluorescence (610 nm) were synthesized by solvent thermal treatment of p-phenylenediamine in toluene. Upon 440 nm excitation, quercetin (QCT) alone endowed slight effects on the red fluorescence of CDs. Once Zn2+ was further introduced, the QCT-Zn2+ complex was quickly formed. This complex absorbs excitation light and emits bright green fluorescence at 480 nm. The red fluorescence of CDs was greatly quenched owing to the inner-filter effect. The ratio of fluorescence intensity at 480 nm and 610 nm (I480/I610) gradually increases with increasing concentration (c) of Zn2+. Al3+ exhibits the same phenomen like Zn2+. Fluoride ions form a more stable complex with Al3+ than QCT-Al3+ complex but have a negligible effect on the QCT-Zn2+ complex. The possible interference of Al3+ on Zn2+ can thus be avoided by adding certain amount of F. The CD-QCT-F system was constructed as a ratio-metric fluorescent nanoprobe toward Zn2+ with determination range of 0.14–30 μM and limit of detection (LOD) of 0.14 μM. Due to the stronger affinity of adenosine triphosphate (ATP) to Zn2+ than QCT, the I480/I610 value of CD-QCT-F-Zn2+ system gradually decreases with increasing cATP. The ratiometric fluorescent nanoprobe toward ATP was established with detection ranges of 0.55–10 and 10–35 μM and a LOD of 0.55 μM. The above two probes enable the quantitative determination of Zn2+ and ATP in tap and lake water samples with satisfactory recoveries.

Schematic representation of the ratiometric fluorescent nanoprobes based on the carbon dots (CDs)-quercetin (QCT) system towards Zn2+ and adenosine triphosphate (ATP) with high selectivity and sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Brazil)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Berg JM, Shi Y (1996) The galvanization of biology: a growing appreciation for the roles of zinc. Science 271:1081–1085

    Article  CAS  Google Scholar 

  2. Beyersmann D, Haase H (2001) Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals 14:331–341

    Article  CAS  Google Scholar 

  3. Vasto S, Candore G, Listi F, Balistreri CR, Colonna-Romano G, Malavolta M, Lio D, Nuzzo D, Mocchegiani E, Di Bona D, Caruso C (2008) Inflammation, genes and zinc in Alzheimer's disease. Brain Res Rev 58:96–105

    Article  CAS  Google Scholar 

  4. Kaur H, Raj P, Sharma H, Verma M, Singh N, Kaur N (2018) Highly selective and sensitive fluorescence sensing of nanomolar Zn2+ ions in aqueous medium using calix 4 arene passivated carbon quantum dots based on fluorescence enhancement: real-time monitoring and intracellular investigation. Anal Chim Acta 1009:1–11

    Article  CAS  Google Scholar 

  5. Zhou Q, Lin Y, Lin Y, Wei Q, Chen G, Tang D (2016) In situ amplified electrochemical aptasensing for sensitive detection of adenosine triphosphate by coupling target-induced hybridization chain reaction with the assembly of silver nanotags. Talanta 146:23–28

    Article  CAS  Google Scholar 

  6. Li X, Peng Y, Chai Y, Yuan R, **ang Y (2016) A target responsive aptamer machine for label-free and sensitive non-enzymatic recycling amplification detection of ATP. Chem Commun 52:3673–3676

    Article  CAS  Google Scholar 

  7. Dong YQ, Wang RX, Li GL, Chen CQ, Chi YW, Chen GN (2012) Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Anal Chem 84:6220–6224

    Article  CAS  Google Scholar 

  8. Wang B, Ln Y, Tan H, Luo M, Dai S, Lu H, Huang Z (2018) One-pot synthesis of N-doped carbon dots by pyrolyzing the gel composed of ethanolamine and 1-carboxyethyl-3-methylimidazolium chloride and their selective fluorescence sensing for Cr(VI) ions. Analyst 143:1906–1915

    Article  CAS  Google Scholar 

  9. Wang B, Tan H, Zhang T, Duan W, Zhu Y (2019) Hydrothermal synthesis of N-doped carbon dots from an ethanolamine-ionic liquid gel to construct label-free multifunctional fluorescent probes for Hg2+, Cu2+ and S2O32−. Analyst 144:3013–3022

    Article  CAS  Google Scholar 

  10. Zu FL, Yan FY, Bai ZJ, Xu JX, Wang YY, Huang YC, Zhou XG (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184:1899–1914

    Article  CAS  Google Scholar 

  11. Zhang Z, Shi Y, Pan Y, Cheng X, Zhang L, Chen J, Li MJ, Yi C (2014) Quinoline derivative-functionalized carbon dots as a fluorescent nanosensor for sensing and intracellular imaging of Zn2+. J Mater Chem B 2:5020–5027

    Article  CAS  Google Scholar 

  12. Han B, Peng T, Yu M, Chi C, Li Y, Hu X, He G (2018) One-pot synthesis of highly fluorescent Fe2+-doped carbon dots for a dual-emissive nanohybrid for the detection of zinc ions and histidine. New J Chem 42:13651–13659

    Article  CAS  Google Scholar 

  13. Song Q, Ma Y, Wang X, Tang T, Song Y, Ma Y, Xu G, Wei F, Cen Y, Hu Q (2018) “on-off-on” fluorescent system for detection of Zn2+ in biological samples using quantum dots-carbon dots ratiometric nanosensor. J Colloid Interface Sci 516:522–528

    Article  CAS  Google Scholar 

  14. Kumar VV, Raman T, Anthony SP (2017) Fluorescent carbon quantum dots chemosensor for selective turn-on sensing of Zn2+ and turn-off sensing of Pb2+ in aqueous medium and zebrafish eggs. New J Chem 41:15157–15164

    Article  Google Scholar 

  15. Omer KM, Hassan AQ (2017) Chelation-enhanced fluorescence of phosphorus doped carbon nanodots for multi-ion detection. Microchim Acta 184:2063–2071

    Article  CAS  Google Scholar 

  16. Yang M, Tang Q, Meng Y, Liu J, Feng T, Zhao X, Zhu S, Yu W, Yang B (2018) Reversible "off-on" fluorescence of Zn2+-passivated carbon dots: mechanism and potential for the detection of EDTA and Zn2+. Langmuir 34:7767–7775

    Article  CAS  Google Scholar 

  17. Yu L, Ren G, Tang M, Zhu B, Chai F, Li G, Xu D (2018) Effective determination of Zn2+, Mn2+, and Cu2+ simultaneously by using dual-emissive carbon dots as colorimetric fluorescent probe. Eur J Inorg Chem 29:3418–3426

    Article  Google Scholar 

  18. Yang M, Kong W, Li H, Liu J, Huang H, Liu Y, Kang Z (2015) Fluorescent carbon dots for sensitive determination and intracellular imaging of zinc(II) ion. Microchim Acta 182:2443–2450

    Article  CAS  Google Scholar 

  19. Zhang Z, Pei K, Yang Q, Dong J, Yan Z, Chen J (2018) A nanosensor made of sulfur-nitrogen co-doped carbon dots for “off-on” sensing of hypochlorous acid and Zn(II) and its bioimaging properties. New J Chem 42:15895–15904

    Article  CAS  Google Scholar 

  20. Wang Y, Lao S, Ding W, Zhang Z, Liu S (2019) A novel ratiometric fluorescent probe for detection of iron ions and zinc ions based on dual-emission carbon dots. Sensors Actuators B Chem 284:186–192

    Article  CAS  Google Scholar 

  21. Sun S, Jiang K, Qian S, Wang Y, Lin H (2017) Applying carbon dots-metal ions ensembles as a multichannel fluorescent sensor array: detection and discrimination of phosphate anions. Anal Chem 89:5542–5548

    Article  CAS  Google Scholar 

  22. Huang Q, Li Q, Chen Y, Tong L, Lin X, Zhu J, Tong Q (2018) High quantum yield nitrogen-doped carbon dots: green synthesis and application as "off-on" fluorescent sensors for the determination of Fe3+ and adenosine triphosphate in biological samples. Sensors Actuators B Chem 276:82–88

    Article  CAS  Google Scholar 

  23. Srinivasan S, Ranganathan V, DeRosa MC, Murari BM (2019) Comparison of turn-on and ratiometric fluorescent G-quadruplex aptasensor approaches for the detection of ATP. Anal Bioanal Chem 411:1319–1330

    Article  CAS  Google Scholar 

  24. Zhang C, Zhang H, Yu Y, Wu S, Chen F (2019) Ratio fluorometric determination of ATP base on the reversion of fluorescence of calcein quenched by Eu(III) ion using carbon dots as reference. Talanta 197:451–456

    Article  CAS  Google Scholar 

  25. He Y, Yu Z, He J, Zhang H, Liu Y, Lei B (2018) Ratiometric and selective fluorescent sensor for Fe(III) and bovine serum albumin based on energy transfer. Sensors Actuators B Chem 262:228–235

    Article  CAS  Google Scholar 

  26. Liu W, Wang X, Wang Y, Li J, Shen D, Kang Q, Chen L (2018) Ratiometric fluorescence sensor based on dithiothreitol modified carbon dots-gold nanoclusters for the sensitive detection of mercury ions in water samples. Sensors Actuators B Chem 262:810–817

    Article  CAS  Google Scholar 

  27. Jiao Y, Gao Y, Meng Y, Lu W, Liu Y, Han H, Shuang S, Li L, Dong C (2019) One-step synthesis of label-free ratiometric fluorescence carbon dots for the detection of silver ions and glutathione and cellular imaging applications. ACS Appl Mater Interfaces 11:16822–16829

    Article  CAS  Google Scholar 

  28. Hollman PCH, Hertog MGL, Katan MB (1996) Role of dietary flavonoids in protection against cancer and coronary heart disease. Biochem Soc Trans 24:785–789

    Article  CAS  Google Scholar 

  29. Moreira AJ, Fraga C, Alonso M, Collado PS, Zetller C, Marroni C, Marroni N, González-Gallego J (2004) Quercetin prevents oxidative stress and NF-κB activation in gastric mucosa of portal hypertensive rats. Biochem Pharmacol 68:1939–1946

    Article  CAS  Google Scholar 

  30. Zhang T, Zhu J, Zhai Y, Wang H, Bai X, Dong B, Wang H, Song H (2017) A novel mechanism for red emission carbon dots: hydrogen bond dominated molecular states emission. Nanoscale 9:13042–13051

    Article  CAS  Google Scholar 

  31. Li H, Xu Y, Zhao L, Ding J, Chen M, Chen G, Li Y, Din L (2019) Synthesis of tiny carbon dots with high quantum yield using multi-walled carbon nanotubes as support for selective "turn-off-on" detection of rutin and Al3+. Carbon 143:391–401

    Article  CAS  Google Scholar 

  32. Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res 8:355–381

    Article  CAS  Google Scholar 

  33. Zhu S, Shao J, Song Y, Zhao X, Du J, Wang L, Wang H, Zhang K, Zhang J, Yang B (2015) Investigating the surface state of graphene quantum dots. Nanoscale 7:7927–7933

    Article  CAS  Google Scholar 

  34. Ding H, Yu SB, Wei JS, **ong HM (2016) Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10:484–491

    Article  CAS  Google Scholar 

  35. Zou Y, Yan F, Dai L, Luo Y, Fu Y, Yang N, Wun J, Chen L (2014) High photoluminescent carbon nanodots and quercetin-Al3+ construct a ratiometric fluorescent sensing system. Carbon 77:1148–1156

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 51975493) and the Postdoctoral Science Foundation Funded Project of China (2015 M582567).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baogang Wang or Mina Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.03 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Liang, Z., Tan, H. et al. Red-emission carbon dots-quercetin systems as ratiometric fluorescent nanoprobes towards Zn2+ and adenosine triphosphate. Microchim Acta 187, 345 (2020). https://doi.org/10.1007/s00604-020-04316-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04316-5

Keywords

Navigation