Log in

Fluorometric and electrochemical dual-mode nanoprobe for tetracycline by using a nanocomposite prepared from carbon nitride quantum dots and silver nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A fluorometric and electrochemical dual-mode method is described for sensitive and specific detection of tetracycline (Tc). A novel nanoprobe was designed that is making use of a Tc-specific aptamer (apta), carbon nitride quantum dots (CNQDs) and silver nanoparticles (AgNPs). The aptamer was linked to the CNQDs which then were used as templates to synthesize the apta-CNQD@AgNP nanocomposites. The blue fluorescence of the nanocomposites (with excitation/emission maxima at 365/440 nm) is quenched. The addition of Tc leads to fluorescence recovery and a decrease in the electroconductivity of a gold electrode modified with apta-CNQD@AgNPs. The fluorometric method has a linear response in the 0.1 μM - 10 mM Tc concentration range and a 15 nM detection limit. The amperometric method (best performed at a working voltage of 0.21 V vs. Ag/AgCl) has a linear response in the 1 nM to 0.1 mM Tc concentration range and a 0.26 nM detection limit. Recoveries of Tc from spiked milk samples were comparable to data obtained by HPLC.

A fluorometric and electrochemical dual-mode nanoprobe (apta-CNQD@AgNPs) was prepared from aptamer (apta), carbon nitride quantum dots (CNQDs) and silver nanoparticles (AgNPs). The nanoprobe can be used for determination of tetracycline (Tc) based on fluorescence recovery of apta-CNQD@AgNPs and a decrease in the electroconductivity of a gold electrode modified with apta-CNQD@AgNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lan L, Yao Y, ** J, Ying Y (2017) Recent advances in nanomaterial-based biosensors for antibiotics detection. Biosens Bioelectron 91:504–514

    Article  CAS  Google Scholar 

  2. Jalalian SH, Karimabadi N, Ramezani M, Abnous K, Taghdisi SM (2018) Electrochemical and optical aptamer-based sensors for detection of tetracyclines. Trends Food Sci Technol 73:45–57

    Article  CAS  Google Scholar 

  3. Ramezani M, Danesh NM, Lavaee P, Abnous K, Taghdisi SM (2015) A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline. Biosens Bioelectron 70:181–187

    Article  CAS  Google Scholar 

  4. Fritz JW, Zuo Y (2007) Simultaneous determination of tetracycline, oxytetracycline, and 4-epitetracycline in milk by high-performance liquid chromatography. Food Chem 105(3):1297–1301

    Article  CAS  Google Scholar 

  5. Wang W, Yu JC, Shen Z, Chan DK, Gu T (2014) G-C3N4 quantum dots: direct synthesis, upconversion properties and photocatalytic application. Chem Commun 50(70):10148–10150

    Article  CAS  Google Scholar 

  6. Li H, Shao F-Q, Huang H, Feng J-J, Wang A-J (2016) Eco-friendly and rapid microwave synthesis of green fluorescent graphitic carbon nitride quantum dots for vitro bioimaging. Sensors Actuators B Chem 226:506–511. https://doi.org/10.1016/j.snb.2015.12.018

    Article  CAS  Google Scholar 

  7. Cheng Q, He Y, Ge Y, Zhou J, Song G (2018) Ultrasensitive detection of heparin by exploiting the silver nanoparticle-enhanced fluorescence of graphitic carbon nitride (g-C 3 N 4 ) quantum dots. Microchim Acta 185(7):332

    Article  Google Scholar 

  8. Chan MH, Liu RS (2016) Carbon nitride quantum dots and their applications. Springer, Singapore

    Book  Google Scholar 

  9. Liu T, Li N, Dong JX, Zhang Y, Fan YZ, Lin SM, Luo HQ, Li NB (2017) A colorimetric and fluorometric dual-signal sensor for arginine detection by inhibiting the growth of gold nanoparticles/carbon quantum dots composite. Biosens Bioelectron 87:772–778

    Article  CAS  Google Scholar 

  10. Jia X, Ji X (2015) Electrochemical probing of carbon quantum dots: not suitable for a single electrode material. RSC Adv 5(130):107270–107275

    Article  CAS  Google Scholar 

  11. Wang H, Lu Q, Li M, Li H, Liu Y, Li H, Zhang Y, Yao S (2018) Electrochemically prepared oxygen and sulfur co-doped graphitic carbon nitride quantum dots for fluorescence determination of copper and silver ions and biothiols. Anal Chim Acta 1027:121–129. https://doi.org/10.1016/j.aca.2018.03.063

    Article  CAS  PubMed  Google Scholar 

  12. Seok Kim Y, Ahmad Raston NH, Bock Gu M (2016) Aptamer-based nanobiosensors. Biosens Bioelectron 76:2–19. https://doi.org/10.1016/j.bios.2015.06.040

    Article  CAS  Google Scholar 

  13. Hu X, Shi J, Shi Y, Zou X, Arslan M, Zhang W, Huang X, Li Z, Xu Y (2019) Use of a smartphone for visual detection of melamine in milk based on au@carbon quantum dots nanocomposites. Food Chem 272:58–65. https://doi.org/10.1016/j.foodchem.2018.08.021

    Article  CAS  PubMed  Google Scholar 

  14. Hu X, Shi J, Shi Y, Zou X, Tahir HE, Holmes M, Zhang W, Huang X, Li Z, Xu Y (2019) A dual-mode sensor for colorimetric and fluorescent detection of nitrite in hams based on carbon dots-neutral red system. Meat Sci 147:127–134. https://doi.org/10.1016/j.meatsci.2018.09.006

    Article  CAS  PubMed  Google Scholar 

  15. Paramelle D, Sadovoy A, Gorelik S, Free P, Hobley J, Fernig DG (2014) A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst 139(19):4855–4861

    Article  CAS  Google Scholar 

  16. Dong J, Zhao Y, Chen HY, Liu L, Zhang W, Sun B, Yang M, Wang Y, Dong L (2018) Fabrication of PEGylated graphitic carbon nitride quantum dots as traceable, pH-sensitive drug delivery systems. New J Chem 42(17):14263–14270

    Article  CAS  Google Scholar 

  17. Barman S, Sadhukhan M (2012) Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive sensors for the detection of mercuric and iodide ions in aqueous media. J Mater Chem 22(41):21832–21837

    Article  CAS  Google Scholar 

  18. Mandani S, Sharma B, Dey D, Sarma TK (2015) Carbon nanodots as ligand exchange probes in au@C-dot nanobeacons for fluorescent turn-on detection of biothiols. Nanoscale 7(5):1802–1808. https://doi.org/10.1039/C4NR05424E

    Article  CAS  PubMed  Google Scholar 

  19. Zhan Y, Liu Z, Liu Q, Huang D, Wei Y, Hu Y, Lian X, Hu C (2017) A facile and one-pot synthesis of fluorescent graphitic carbon nitride quantum dots for bio-imaging application. New J Chem 41(10):3930–3938

    Article  CAS  Google Scholar 

  20. Cao X, Ma J, Lin Y, Yao B, Li F, Wen W, Lin X (2015) A facile microwave-assisted fabrication of fluorescent carbon nitride quantum dots and their application in the detection of mercury ions. Spectrochim Acta A Mol Biomol Spectrosc 151(1):875–880

    Article  CAS  Google Scholar 

  21. Song Y, Xu G, Wei F, Cen Y, Sohail M, Shi M, Xu X, Ma Y, Ma Y, Hu Q (2018) Aptamer-based fluorescent platform for ultrasensitive adenosine detection utilizing Fe 3 O 4 magnetic nanoparticles and silver nanoparticles. Microchim Acta 185(2):139

    Article  Google Scholar 

  22. Yu M, Wang H, Fu F, Li L, Li J, Li G, Song Y, Swihart MT, Song E (2017) Dual-recognition Förster resonance energy transfer based platform for one-step sensitive detection of pathogenic Bacteria using fluorescent vancomycin-gold nanoclusters and aptamer-gold nanoparticles. Anal Chem 89(7)

    Article  CAS  Google Scholar 

  23. Yiwei X, Wen Z, ** C, Tahir HE, Zhihua L (2018) A self-assembled L-cysteine and electrodeposited gold nanoparticles-reduced graphene oxide modified electrode for adsorptive strip** determination of copper. Electroanalysis 30(1):194–203. https://doi.org/10.1002/elan.201700637

    Article  CAS  Google Scholar 

  24. Kashefi-Kheyrabadi L, Mehrgardi MA (2012) Aptamer-conjugated silver nanoparticles for electrochemical detection of adenosine triphosphate. Biosens Bioelectron 37(1):94–98

    Article  CAS  Google Scholar 

  25. Liu X, Zheng S, Hu Y, Li Z, Luo F, He Z (2016) Electrochemical Immunosensor based on the chitosan-magnetic nanoparticles for detection of tetracycline. Food Anal Methods 9(10):2972–2978

    Article  Google Scholar 

  26. Wang Y, Hu A (2015) Carbon quantum dots: synthesis, properties and applications. J Funct Mater 2(34):6921–6939

    Google Scholar 

  27. Liu ZH, Ye N, Guo WL, Huang YL, Zhang CP, Guo XH, Huang QY (2009) Development of an ELISA method for multi-residue detecting of tetracyclines. Sci Agric Sin 42(1):318–323

    Google Scholar 

  28. Qi M, Tu C, Dai Y, Wang W, Wang AJ, Chen J (2018) A simple colorimetric analytical assay using gold nanoparticles for specific detection of tetracycline in environmental water sample. Anal Methods 10(27):3402–3407

    Article  CAS  Google Scholar 

  29. Shen Z, Zhang C, Yu X, Li J, Wang Z, Zhang Z, Liu B (2018) Microwave synthesis of cyclen functional carbon dots to construct ratiometric fluorescent probe for tetracycline detection. J Mater Chem C 6:9636–9641

    Article  CAS  Google Scholar 

  30. Zhang L, Chen L (2016) Fluorescence probe based on hybrid mesoporous silica/quantum dot/molecularly imprinted polymer for detection of tetracycline. ACS Appl Mater Interfaces 8(25):16248–16256. https://doi.org/10.1021/acsami.6b04381

    Article  CAS  PubMed  Google Scholar 

  31. Li X, Hong M, Min D, Iqbal A, Liu X, Bo L, Liu WS, Li J, Qin W (2017) Europium functionalized Ratiometric fluorescent transducer silicon nanoparticles based on FRET for highly sensitive detection of tetracycline. J Mater Chem C 5(1–8):2149–2152

    Article  CAS  Google Scholar 

  32. Le T, Phuc Pham V, La H, Binh Phan T, Huan Le Q (2016) Electrochemical aptasensor for detecting tetracycline in milk. Adv Nat Sci 7(1):015008. https://doi.org/10.1088/2043-6262/7/1/015008

    Article  CAS  Google Scholar 

  33. Tang Y, Liu P, Xu J, Li L, Yang L, Liu X, Liu S, Zhou Y (2018) Electrochemical aptasensor based on a novel flower-like TiO2 nanocomposite for the detection of tetracycline. Sensors Actuators B Chem 258:906–912. https://doi.org/10.1016/j.snb.2017.11.071

    Article  CAS  Google Scholar 

  34. Cui R, Pan H-C, Zhu J-J, Chen H-Y (2007) Versatile immunosensor using CdTe quantum dots as electrochemical and fluorescent labels. Anal Chem 79(22):8494–8501

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (31671844, 31601543), National Key Technology Research and Development Program of China (2018YFD040080, 2017YFC1600805, 2017YFC1600806) and Six Talent Peaks Project in Jiangsu Province (GDZB-016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiyong Shi or **aobo Zou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent is not applicable for the nature of this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 5513 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Xu, Y., Cui, X. et al. Fluorometric and electrochemical dual-mode nanoprobe for tetracycline by using a nanocomposite prepared from carbon nitride quantum dots and silver nanoparticles. Microchim Acta 187, 83 (2020). https://doi.org/10.1007/s00604-019-3828-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3828-4

Keywords

Navigation