Log in

Biological sample preparation by using restricted-access nanoparticles prepared from bovine serum albumin: application to liquid chromatographic determination of β-blockers

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Restricted-access nanoparticles (RANPs) were prepared from bovine serum albumin by coacervation. They have an average sized of 311 nm. They were characterized and used to capture the β-blockers atenolol, metoprolol and propranolol from untreated biological samples. It is shown that both high protein affinity drugs (propranolol) and low protein affinity drugs (atenolol) could be rapidly extracted from plasma. This is revealed by kinetic and isothermal adsorption studies. On the other hand, almost all proteins from the sample were excluded. This demonstrates the efficiency of RANPs as restricted-access material. Sample preparation was carried out by solid phase microextraction using a probe obtained by the fixation of the RANPs at the end of a glass capillary. Atenolol (in concentrations from 100 to 1200 μg L−1), metoprolol (from 80 to 1000 μg L−1) and propranolol (from 15 to 200 μg L−1) were extracted from spiked plasma samples and analyzed by LC MS/MS without using a separation column. Correlation coefficients >0.99, good precision, accuracy, robustness, and lack of memory effects were observed for all of the analytes. The detection limits (at an S/N of 3) are 25.6, 14.6, and 3.8 μg L−1 for atenolol, metoprolol and propranolol, respectively. Ten samples can be simultaneously extracted within ∼15 min. Plasma samples of patients undergoing medical treatment were successfully analyzed with the method.

Schematic representation of a bovine serum albumin-based restricted access nanoparticle that exclude proteins from a human plasma sample but capture the small analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. de Faria HD, Abrão LC de C, Santos MG et al (2017) New advances in restricted access materials for sample preparation: a review. Anal Chim Acta 959:43–65. https://doi.org/10.1016/j.aca.2016.12.047

    Article  CAS  PubMed  Google Scholar 

  2. Kataoka H (2018) Recent advances in online column-switching sample preparation. In: Reference module in chemistry, molecular sciences and chemical engineering. Elsevier, pp 1–30

  3. Denadai M, Cass QB (2015) Simultaneous determination of fluoroquinolones in environmental water by liquid chromatography-tandem mass spectrometry with direct injection: a green approach. J Chromatogr A 1418:177–184. https://doi.org/10.1016/j.chroma.2015.09.066

    Article  CAS  PubMed  Google Scholar 

  4. Gomes RAB, Luccas PO, de Magalhães CS, de Figueiredo EC (2016) Evaluation of the pH influence on protein exclusion by restricted access carbon nanotubes coated with bovine serum albumin. J Mater Sci 51:7407–7414. https://doi.org/10.1007/s10853-016-9984-6

    Article  CAS  Google Scholar 

  5. Shankar KR, Ameta RK, Singh M (2016) Preparation of BSA nanoparticles using aqueous urea at T = 308.15, 313.15 and 318.15 K as a function of temperature. J Mol Liq 216:808–813. https://doi.org/10.1016/j.molliq.2016.02.001

    Article  CAS  Google Scholar 

  6. Tang QS, Chen DZ, Xue WQ et al (2011) Preparation and biodistribution of 188Re-labeled folate conjugated human serum albumin magnetic cisplatin nanoparticles (188Re-folate-CDDP/HSA MNPs) in vivo. Int J Nanomedicine 6:3077–3085. https://doi.org/10.2147/IJN.S24322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Elzoghby AO, Samy WM, Elgindy NA (2012) Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release 157:168–182. https://doi.org/10.1016/j.jconrel.2011.07.031

    Article  CAS  PubMed  Google Scholar 

  8. Nsubuga H, Basheer C, Haider MB, Bakdash R (2018) Sol-gel based biogenic silica composite as green nanosorbent for chemometric optimization of micro-solid-phase extraction of beta blockers. J Chromatogr A 1554:16–27. https://doi.org/10.1016/j.chroma.2018.04.044

    Article  CAS  PubMed  Google Scholar 

  9. Galisteo-González F, Molina-Bolívar JA (2014) Systematic study on the preparation of BSA nanoparticles. Colloid Surface B 123:286–292. https://doi.org/10.1016/j.colsurfb.2014.09.028

    Article  CAS  Google Scholar 

  10. Barbosa AF, Barbosa VMP, Bettini J, Luccas PO, Figueiredo EC (2015) Restricted access carbon nanotubes for direct extraction of cadmium from human serum samples followed by atomic absorption spectrometry analysis. Talanta 131:213–220. https://doi.org/10.1016/j.talanta.2014.07.051

    Article  CAS  PubMed  Google Scholar 

  11. dos Santos RC, Kakazu AK, Santos MG, Belinelli Silva FA, Figueiredo EC (2017) Characterization and application of restricted access carbon nanotubes in online extraction of anticonvulsant drugs from plasma samples followed by liquid chromatography analysis. J Chromatogr B 1054:50–56. https://doi.org/10.1016/j.jchromb.2017.02.025

    Article  CAS  Google Scholar 

  12. Silva FAB, Chagas-Silva FA, Florenzano FH, Pissetti FL (2016) Poly(dimethylsiloxane) and poly[vinyltrimethoxysilane-co-2-(dimethylamino) ethyl methacrylate] based cross-linked oroganic-inorganic hybrid adsorbent for copper(II) removal from aqueous solutions. J Braz Chem Soc 27:2181–2191. https://doi.org/10.5935/0103-5053.20160110

    Article  CAS  Google Scholar 

  13. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. https://doi.org/10.1016/j.cej.2009.09.013

    Article  CAS  Google Scholar 

  14. Boscari CN, Mazzuia GR, Wisniewski C, Borges KB, Figueiredo EC (2017) Molecularly imprinted probe for solid-phase extraction of hippuric and 4-methylhippuric acids directly from human urine samples followed by MEKC analysis. Electrophoresis 38:1083–1090. https://doi.org/10.1002/elps.201600382

    Article  CAS  PubMed  Google Scholar 

  15. FDA - U.S. Department of Health and Human Services (2013) Guidance for industry: bioanalytical method validation. 34. http://www.labcompliance.de/documents/FDA/FDA-Others/Laboratory/f-507-bioanalytical-4252fnl.pdf

  16. Rahimnejad M, Najafpour G, Bakeri G (2012) Investigation and modeling effective parameters influencing the size of BSA protein nanoparticles as colloidal carrier. Colloid Surface A 412:96–100. https://doi.org/10.1016/j.colsurfa.2012.07.022

    Article  CAS  Google Scholar 

  17. Menezes ML, Fèlix G (1998) On line extraction and separation of bendiocarb, methomyl, methylparathion, and pentachlorophenol pesticides from raw milk. J Liq Chromatogr Relat Technol 21:2863–2871. https://doi.org/10.1080/10826079808003449

    Article  CAS  Google Scholar 

  18. Bronze-Uhle ES, Costa BC, **menes VF, Lisboa-Filho PN (2017) Synthetic nanoparticles of bovine serum albumin with entrapped salicylic acid. Nanotechnol Sci Appl 10:11–21. https://doi.org/10.2147/NSA.S117018

    Article  CAS  PubMed  Google Scholar 

  19. Kumar KV, Sivanesan S (2006) Pseudo second order kinetics and pseudo isotherms for malachite green onto activated carbon: comparison of linear and non-linear regression methods. J Hazard Mater 136:721–726. https://doi.org/10.1016/j.jhazmat.2006.01.003

    Article  CAS  PubMed  Google Scholar 

  20. Liu Y, Liu Y-J (2008) Biosorption isotherms, kinetics and thermodynamics. Sep Purif Technol 61:229–242. https://doi.org/10.1016/j.seppur.2007.10.002

    Article  CAS  Google Scholar 

  21. Kufleitner J, Wagner S, Worek F, von Briesen H, Kreuter J (2010) Adsorption of obidoxime onto human serum albumin nanoparticles: drug loading, particle size and drug release. J Microencapsul 27:506–513. https://doi.org/10.3109/02652041003681406

    Article  CAS  PubMed  Google Scholar 

  22. Figueiredo EC, Sparrapan R, Sanvido GB, Santos MG, Zezzi Arruda MA, Eberlin MN (2011) Quantitation of drugs via molecularly imprinted polymer solid phase extraction and electrospray ionization mass spectrometry: benzodiazepines in human plasma. Analyst 136:3753–3757. https://doi.org/10.1039/c1an15198c

    Article  CAS  PubMed  Google Scholar 

  23. Benfield P, Clissold SP, Brogden RN (1986) Metoprolol: an updated review of its Pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy, in hypertension, Ischaemic heart disease and related cardiovascular disorders. Drugs 31:376–429. https://doi.org/10.2165/00003495-198631050-00002

    Article  CAS  PubMed  Google Scholar 

  24. Leonetti G, Terzoli L, Bianchini C, Sala C, Zanchetti A (1980) Time-course of the anti-hypertensive action of atenolol: comparison of response to first dose and to maintained oral administration. Eur J Clin Pharmacol 18:365–374. https://doi.org/10.1007/BF00636787

    Article  CAS  PubMed  Google Scholar 

  25. Bengtsson C, Johnson G, Regdh CG (1975) Plasma levels and effects of metoprolol on blood pressure and heart rate in hypertensive patients after an acute dose and between two doses during long-term treatment. Clin Pharmacol Ther 17:400–408. https://doi.org/10.1002/cpt1975174400

    Article  CAS  PubMed  Google Scholar 

  26. Mansur AP, Avakian SD, Paula RS, Donzella H, Santos SRCJ, Ramires JAF (1998) Pharmacokinetics and pharmacodynamics of propranolol in hypertensive patients after sublingual administration: systemic availability. Brazilian J Med Biol Res 31:691–696. https://doi.org/10.1590/S0100-879X1998000500014

    Article  CAS  Google Scholar 

  27. Fan W, He M, You L, Zhu X, Chen B, Hu B (2016) Water-compatible graphene oxide/molecularly imprinted polymer coated stir bar sorptive extraction of propranolol from urine samples followed by high performance liquid chromatography-ultraviolet detection. J Chromatogr A 1443:1–9. https://doi.org/10.1016/j.chroma.2016.03.017

    Article  CAS  PubMed  Google Scholar 

  28. Gorbani Y, Yılmaz H, Basan H (2017) Spectrofluorimetric determination of atenolol from human urine using high-affinity molecularly imprinted solid-phase extraction sorbent. Luminescence 32:1391–1397. https://doi.org/10.1002/bio.3335

    Article  CAS  PubMed  Google Scholar 

  29. Ensafi AA, Kazemifard N, Rezaei B (2017) Development of a nano plastic antibody for determination of propranolol using CdTe quantum dots. Sensor Actuat B-Chem 252:846–853. https://doi.org/10.1016/j.snb.2017.06.078

    Article  CAS  Google Scholar 

  30. Kim HM, Park JH, Long NP, Kim DD, Kwon SW (2019) Simultaneous determination of cardiovascular drugs in dried blood spot by liquid chromatography-tandem mass spectrometry. J Food Drug Anal:1–9 (in press). https://doi.org/10.1016/j.jfda.2019.06.001

  31. Elgawish MS, Mostafa SM, Elshanawane AA (2011) Simple and rapid HPLC method for simultaneous determination of atenolol and chlorthalidone in spiked human plasma. Saudi Pharm J 19:43–49. https://doi.org/10.1016/j.jsps.2010.10.003

    Article  CAS  PubMed  Google Scholar 

  32. Renkecz T, Ceolin G, Horváth V (2011) Selective solid phase extraction of propranolol on multiwell membrane filter plates modified with molecularly imprinted polymer. Analyst 136:2175–2182. https://doi.org/10.1039/c0an00906g

    Article  CAS  PubMed  Google Scholar 

  33. Jamshidi S, Rofouei MK, Thorsen G (2019) Using magnetic core-shell nanoparticles coated with an ionic liquid dispersion assisted by effervescence powder for the micro-solid-phase extraction of four beta blockers from human plasma by ultra high performance liquid chromatography with mass spectrom. J Sep Sci 42:698–705. https://doi.org/10.1002/jssc.201800834

    Article  CAS  PubMed  Google Scholar 

  34. Mabrouk MM, Hammad SF, El-Malla SF, Elshenawy EA (2019) Green micellar HPLC-fluorescence method for simultaneous determination of metoprolol and amlodipine in their combined dosage form: application on metoprolol in spiked human plasma. Microchem J 147:635–642. https://doi.org/10.1016/j.microc.2019.03.084

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG, Belo Horizonte, Brazil) [projects CDS-APQ-00638-17 and CDS-PPM-00144-15]; the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brasília, Brazil) [project 427365/2018-0]; and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Costa Figueiredo.

Ethics declarations

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. Restricted access nanoparticles (RANPs) of bovine serum albumin were synthesized.

2. RANPs efficiently excluded proteins from biological fluids.

3. Drugs with high and low protein binding rates were retained by the RANPs.

4. RANPs probes were useful, simple, and reproducible for solid phase microextraction.

5. The method was validated and used to determine β-blockers in human plasma samples.

Electronic supplementary material

ESM 1

(DOCX 37.0 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosa, M.A., De Faria, H.D., Carvalho, D.T. et al. Biological sample preparation by using restricted-access nanoparticles prepared from bovine serum albumin: application to liquid chromatographic determination of β-blockers. Microchim Acta 186, 647 (2019). https://doi.org/10.1007/s00604-019-3774-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3774-1

Keywords

Navigation