Log in

Aptamer-mediated N/Ce-doped carbon dots as a fluorescent and resonance Rayleigh scattering dual mode probe for arsenic(III)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Carbon dots doped with N/Ce, N/Eu and N/Tb were prepared by a microwave based hydrothermal technique. The fluorescence of the N/Ce co-doped carbon dots (CDN/Ce) is strongest. They have excitation/emission maxima at 340/441 nm. CDN/Ce was characterized by scanning electron microscopy, infrared and fluorescence spectroscopy. On addition of the nucleic acid aptamer (Apt) against arsenic(III) in pH 7 solution, the blue fluorescence of the doped carbon dots is partially quenched due to electrostatic interaction. On addition of As(III), it will bind to the aptamer, and the carbon dots are released. Hence, fluorescence becomes gradually restored. In addition, the resonance Rayleigh scattering signal (measured at 340 nm) is reduced. This dual-mode assay works in the 0.5–5.8 μg·L−1 As(III) concentration range and has a 0.2 μg·L−1 detection limit.

Schematic representation of fluorometric and resonance Rayleigh scattering dual mode analysis of As3+ by using coupled Apt and CDN/Ce probes. Apt: Aptamer. CD: Carbon dot. Flu: Fluorescence. RRS: Resonance Rayleigh scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ellington AD, Szostak JW (1992) Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355:850–852

    Article  CAS  Google Scholar 

  2. Zhang B, Wei C (2017) Highly sensitive and selective fluorescence detection of Hg2+ based on turn-on aptamer DNA silver nanoclusters. RSC Adv 7:56289–56295

    Article  CAS  Google Scholar 

  3. Lin Z, Li M, Lv S, Zhang K, Lu M (2017) In-situ synthesis of fluorescent polydopamine nanoparticles coupled with enzyme-controlled dissolution of MnO2 nanoflakes for sensitive immunoassay of cancer biomarkers. J Mater Chem B 5:8506–8513

    Article  CAS  Google Scholar 

  4. Tang D, Lin Y, Zhou Q, Lin Y, Li P (2014) Low-cost and highly sensitive immunosensing platform for aflatoxins using one-step competitive displacement reaction mode and portable glucometer-based detection. Anal Chem 86:11451–11458

    Article  CAS  Google Scholar 

  5. Li D, Song S, Fan C (2010) Target-responsive structural switching for nucleic acid-based sensors. Accounts Chem Res 43:631–641

    Article  Google Scholar 

  6. Du J, Cui J, **g C (2014) Rapid in situ identification of arsenic species using a portable Fe3O4@Ag SERS sensor. Chem Commun 50:347–349

    Article  CAS  Google Scholar 

  7. Wu Y, Liu L, Zhan S, Wang F, Zhou P (2012) Ultrasensitive aptamer biosensor for arsenic(III) detection in aqueous solution based on surfactant-induced aggregation of gold nanoparticles. Analyst 137:4171–4178

    Article  CAS  Google Scholar 

  8. Divsar F, Habibzadeh K, Shariati S, Shahriarinour M (2015) Aptamer conjugated silver nanoparticles for the colorimetric detection of arsenic ions using response surface methodology. Anal Methods 7:4568–4576

    Article  CAS  Google Scholar 

  9. Lv X, Zhang Y, Liu G, Du L, Wang S (2017) Aptamer-based fluorescent detection of ochratoxin a by quenching of gold nanoparticles. RSC Adv 7:16290–16294

    Article  CAS  Google Scholar 

  10. Wang P, Wan Y, Ali A, Deng S, Su Y (2016) Aptamer-wrapped gold nanoparticles for the colorimetric detection of omethoate. Sci China Chem 59:237–242

    Article  CAS  Google Scholar 

  11. Dehghani S, Danesh NM, Ramezani M, Alibolandi M, Lavaee P, Nejabat M, Abnous K, Taghdisi SM (2018) A label-free fluorescent aptasensor for detection of kanamycin based on dsDNA-capped mesoporous silica nanoparticles and rhodamine B. Anal Chim Acta 2670:142–147

    Article  Google Scholar 

  12. Tang M, Wen G, Luo Y, Kang C, Liang A (2014) A label-free DNAzyme-cleaving fluorescence method for the determination of trace Pb2+ based on catalysis of AuPd nanoalloy on the reduction of rhodamine 6G: DNAzyme-cleaving fluorescence method for Pb. Luminescence 30:296–302

    Article  Google Scholar 

  13. Ikanovic M, Rudzinski WE, Bruno JG, Allman A, Carrillo MP (2007) Fluorescence assay based on aptamer-quantum dot binding to bacillus thuringiensis spores. J Fluoresc 17:193–199

    Article  CAS  Google Scholar 

  14. Taghdisi SM, Danesh NM, Beheshti HR, Ramezani M, Abnous K (2016) A novel fluorescent aptasensor based on gold and silica nanoparticles for the ultrasensitive detection of ochratoxin a. Nanoscale 8:3439–3446

    Article  CAS  Google Scholar 

  15. Mishra M, Chakravarty A, Bhowmik K, Bhowmik K, De G (2015) Carbon nanodot- ORMOSIL fluorescent paint and films. J Mater Chem C 3:714–719

    Article  CAS  Google Scholar 

  16. Du Y, Guo S (2016) Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications. Nanoscale 8:2532–2543

    Article  CAS  Google Scholar 

  17. Ding H, Wei J, **ong H (2014) Nitrogen and sulfur co-doped carbon dots with strong blue luminescence. Nanoscale 6:13817–13823

    Article  CAS  Google Scholar 

  18. Barati A, Shamsipur M, Abdollahi H (2015) Hemoglobin detection using carbon dots as a fluorescence probe. Biosens Bioelectron 71:470–475

    Article  CAS  Google Scholar 

  19. Shaswat B, Satyabrat G, Raju K (2018) Fluorescence biosensor based on gold-carbon dot probe for efficient detection of cholesterol. Synth Met 244:92–98

    Article  Google Scholar 

  20. Qiao C, Yu H, Yi G, Zhou J, Song G (2018) Ultrasensitive detection of heparin by exploiting the silver nanoparticle-enhanced fluorescence of graphitic carbon nitride (g-C3N4) quantum dots. Microchim Acta 185:332

    Article  Google Scholar 

  21. Han S, Chang T, Zhao H, Du H, Liu S, Wu B, Qin S (2017) Cultivating fluorescent flowers with highly luminescent carbon dots fabricated by a double passivation method. Nanomaterials 7:176

    Article  Google Scholar 

  22. Wang W, Zhao Y, ** Y (2013) Gold-nanorod-based colorimetric and fluorescent approach for sensitive and specific assay of disease-related gene and mutation. ACS Appl Mater Inter 5:11741–11746

    Article  CAS  Google Scholar 

  23. Wang Z, Zong S, Wang L, Wang C, Xu S, Chen H, Cui Y (2012) SERS-fluorescence joint spectral encoding using organic-metal-QD hybrid nanoparticles with a huge encoding capacity for high-throughput biodetection: putting theory into practice. J Am Chem Soc 134:2993–3000

    Article  CAS  Google Scholar 

  24. Liang W, Liu Z, Liu S, Yang J, He Y (2014) A novel surface modification strategy of CdTe/CdS QDs and its application for sensitive detection of ct-DNA. Sensor Actuat B 196:336–344

    Article  CAS  Google Scholar 

  25. Wang J, Liu Z, Liu J, Liu S, Shen W (2008) Study on the interaction between fluoroquinolones and erythrosine by absorption, fluorescence and resonance Rayleigh scattering spectra and their application. Spectrochim Acta A 69:956–963

    Article  Google Scholar 

  26. Moriarty MM, Koch I, Gordon RA, Reimer KJ (2009) Arsenic speciation of terrestrial invertebrates. Environ Sci Technol 43:4818–4823

    Article  CAS  Google Scholar 

  27. Fendorf S, Michael HA, Van GA (2010) Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science 328:1123–1127

    Article  CAS  Google Scholar 

  28. Gutu CM, Preoteasa V, Olaru OT, Purdel CN, Ilie M (2014) Atomic absorption spectrometry and ICP-MS methods used to evaluate the arsenic intake in a toxicity assay on daphnia magna. Toxicol Lett 229:S110

    Google Scholar 

  29. Chen G, Chen T (2014) SPE speciation of inorganic arsenic in rice followed by hydride-generation atomic fluorescence spectrometric quantification. Talanta 119:202–206

    Article  CAS  Google Scholar 

  30. Komorowicz I, Barałkiewicz D (2013) Arsenic speciation in water by high-performance liquid chromatography/inductively coupled plasma mass spectrometry-method validation and uncertainty estimation. Rapid Commun Mass Spectrom 28:159–168

    Article  Google Scholar 

  31. Campillo N, Peñalver R, Viñas P (2009) Speciation of arsenic using capillary gas chromatography with atomic emission detection. Talanta 77:793–79914

    Article  Google Scholar 

  32. Tang M, Wen G, Liang A, Jiang Z (2015) A simple and sensitive resonance Rayleigh scattering method for determination of As(III) using aptamer-modified nanogold as a probe. Luminescence 29:603–608

    Article  Google Scholar 

  33. Tian H, Zhuang G, Ma A, **g C (2012) Arsenic interception by cell wall of bacteria observed with surface-enhanced Raman scattering. J Microbiol Methods 89:153–158

    Article  CAS  Google Scholar 

  34. Pan J, Zhou D, Chen J (2018) Ultrasensitive aptamer biosensor for arsenic (III) detection based on label-free triple-helix molecular switch and fluorescence sensing platform. Talanta 189:370–376

    Article  CAS  Google Scholar 

  35. Li G, Liu Y, Wang Y, Liao L (2009) The molecular resonance fluorescence method for determination of arsenic in hair samples. Spectrochim Acta A 72:811–815

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21667006, 21767004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aihui Liang or Zhiliang Jiang.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 46.8 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Li, J., Wang, X. et al. Aptamer-mediated N/Ce-doped carbon dots as a fluorescent and resonance Rayleigh scattering dual mode probe for arsenic(III). Microchim Acta 186, 638 (2019). https://doi.org/10.1007/s00604-019-3764-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3764-3

Keywords

Navigation