Log in

Simultaneous voltammetric determination of acetaminophen, naproxen, and theophylline using an in-situ polymerized poly(acrylic acid) nanogel covalently grafted onto a carbon black/La2O3 composite

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Lanthanum oxide nanomaterials were decorated with carbon black (CB) and grafted with a poly(acrylic acid) nanogel to obtain a composite material (CB-g-PAA/La2O3) for simultaneous determination of acetaminophen (AMP), naproxen (NPX), and theophylline (TPH). The nanogel was synthesized by in-situ free radical polymerization. The composite was dropped onto a glassy carbon electrode (GCE), and the modified GCE displays robust electrocatalytic activity towards AMP, NPX, and TPH, with voltammetric signals that are enhanced compared to a bare GCE. Features of merit for AMP, NPX, and TPH, respectively, include (a) peak potentials of 0.42, 0.85 and 0.12 V (vs. Ag/AgCl), (b) linear ranges from 0.05–887, 0.05–884, and 0.02–888 μM, and (c) detection limits of 20, 35, and 15 nM. The practical applicability of the CB-g-PAA/La2O3/GCE was illustrated by analyzing serum and urine samples.

Schematic presentation of simultaneous electrochemical sensing of acetaminophen (AMP), naproxen (NPX), and theophylline (TPH) in real sample analysis using poly(acrylic acid) nanogel covalently grafted onto a carbon black/La2O3 composite (CB-g-PAA/La2O3/GCE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang Y, Huang Z, Wang L, Wang C, Zhang C, Wiese T, Wang G, Riley K, Wang Z (2018) Point-of-care determination of acetaminophen levels with multi-hydrogen bond manipulated single-molecule recognition (eMuHSiR). Anal Chem 90:4733–4740

    Article  CAS  Google Scholar 

  2. Nourjah P, Ahmad SR, Karwoski C, Willy M (2006) Estimates of acetaminophen (paracetomal)-associated overdoses in the United States. Pharmacoepidemiol Drug Saf 15:398–405

    Article  Google Scholar 

  3. Gouda AA, El-Sayed MIK, Amin AS, El Sheikh R (2013) Spectrophotometric and spectrofluorometric methods for the determination of non-steroidal anti-inflammatory drugs: a review. Arab J Chem 6:145–163

    Article  CAS  Google Scholar 

  4. Bjarnason I, Thjodleifsson B (1999) Gastrointestinal toxicity of non-steroidal anti-inflammatory drugs: the effect of nimesulide compared with naproxen on the human gastrointestinal tract. Rheumatology (Oxford, England) 38:24–32

    Article  CAS  Google Scholar 

  5. Giraud MN, Motta C, Romero JJ, Bommelaer G, Lichtenberger LM (1999) Interaction of indomethacin and naproxen with gastric surface-active phospholipids: a possible mechanism for the gastric toxicity of nonsteroidal anti-inflammatory drugs (NSAIDs)∗. Biochem Pharmacol 57:247–254

    Article  CAS  Google Scholar 

  6. Victorino RM, Silveira JC, Baptista A, De Moura MC (1980) Jaundice associated with naproxen. Postgrad Med J 56:368–370

    Article  CAS  Google Scholar 

  7. Isidori M, Lavorgna M, Nardelli A, Parrella A, Previtera L, Rubino M (2005) Ecotoxicity of naproxen and its phototransformation products. Sci Total Environ 348:93–101

    Article  CAS  Google Scholar 

  8. Sullivan P, Jaffar Z, Page C, Costello J, Bekir S, Jeffery P (1994) Anti-inflammatory effects of low-dose oral theophylline in atopic asthma. Lancet. 343:1006–1008

    Article  CAS  Google Scholar 

  9. Minton NA, Henry JA (1996) Treatment of theophylline overdose. Am J Emerg Med 14:606–612

    Article  CAS  Google Scholar 

  10. Norouzi P, Haji-Hashemi H, Larijani B, Aghazadeh M, Pourbasheer E, Ganjali RM (2017) Application of new advanced electrochemical methods combine with nano-based materials sensor in drugs analysis. Curr Anal Chem 13:70–80

    Article  CAS  Google Scholar 

  11. Zhang X, **ao Q, Zhang Y, Jiang X, Yang Z, Xue Y, Sun K (2014) La2O3 doped carbonaceous microspheres: a novel bifunctional electrocatalyst for oxygen reduction and evolution reactions with ultrahigh mass activity. J Phys Chem C 118:20229–20237

    Article  CAS  Google Scholar 

  12. Miah M, Bhattacharya S, Dinda D, Saha SK (2018) Temperature dependent supercapacitive performance in La2O3 nano sheet decorated reduce graphene oxide. Electrochim Acta 260:449–458

    Article  CAS  Google Scholar 

  13. Ye W, Yu J, Zhou Y, Gao D, Wang D, Wang C, Xue D (2016) Green synthesis of Pt–Au dendrimer-like nanoparticles supported on polydopamine-functionalized graphene and their high performance toward 4-nitrophenol reduction. Appl Catal B 181:371–378

    Article  CAS  Google Scholar 

  14. Silva TA, Moraes FC, Janegitz BC, Fatibello-Filho O (2017) Electrochemical biosensors based on nanostructured carbon black: a review. J Nanomater 2017:4571614

    Google Scholar 

  15. Gu W, Liu J, Hu M, Wang F, Song Y (2015) La2O2CO3 encapsulated La2O3 nanoparticles supported on carbon as superior electrocatalysts for oxygen reduction reaction. ACS Appl Mater Interfaces 7:26914–26922

    Article  CAS  Google Scholar 

  16. Jaffe A, Saldivar Valdes A, Karunadasa HI (2015) Quinone-functionalized carbon black cathodes for lithium batteries with high power densities. Chem Mater 27:3568–3571

    Article  CAS  Google Scholar 

  17. Jiang Q, Wang S, Xu S (2018) Preparation and characterization of water-dispersible carbon black grafted with polyacrylic acid by high-energy electron beam irradiation. J Mater Sci 53:6106–6115

    Article  CAS  Google Scholar 

  18. Tsubokawa N (1992) Functionalization of carbon black by surface grafting of polymers. Prog Polym Sci 17:417–470

    Article  CAS  Google Scholar 

  19. Rubio N, Au H, Leese HS, Hu S, Clancy AJ, Shaffer MS (2017) Grafting from versus grafting to approaches for the functionalization of graphene nanoplatelets with poly (methyl methacrylate). Macromolecules 50:7070–7079

    Article  CAS  Google Scholar 

  20. Zhou G, Xu X, Wang S, He X, He W, Su X, Wong CP (2017) Surface grafting of epoxy polymer on CB to improve its dispersion to be the filler of resistive ink for PCB. Results Phys 7:1870–1877

    Article  Google Scholar 

  21. Tamaki T, Ito T, Yamaguchi T (2007) Immobilization of hydroquinone through a spacer to polymer grafted on carbon black for a high-surface-area biofuel cell electrode. J Phys Chem B 111:10312–10319

    Article  CAS  Google Scholar 

  22. Pedersen H, Söderlind F, Petoral RM Jr, Uvdal K, Käll PO, Ojamäe L (2005) Surface interactions between Y2O3 nanocrystals and organic molecules—an experimental and quantum-chemical study. Surf Sci 592:124–140

    Article  CAS  Google Scholar 

  23. Madaeni SS, Zinadini S, Vatanpour V (2011) A new approach to improve antifouling property of PVDF membrane using in situ polymerization of PAA functionalized TiO2 nanoparticles. J Membr Sci 380:155–162

    Article  CAS  Google Scholar 

  24. Jiang Q, Wang S, Xu S (2018) Preparation and characterization of water-dispersible carbon black grafted with polyacrylic acid by high-energy electron beam irradiation. J Mater Sci 53:6106–6115

    Article  CAS  Google Scholar 

  25. Chen S, Pan B, Zeng L, Luo S, Wang X, Su W (2017) La2Sn2O7 enhanced photocatalytic CO2 reduction with H2O by deposition of Au CO-catalyst. RSC Adv 7:14186–14191

    Article  CAS  Google Scholar 

  26. Pandey RR, Alshahrani HS, Krylyuk S, Williams EH, Davydov AV, Chusuei CC (2018) Electrochemical detection of acetaminophen with silicon nanowires. Electroanalysis 30:886–891

    Article  CAS  Google Scholar 

  27. Sarhangzadeh K (2015) Application of multi wall carbon nanotube–graphene hybrid for voltammetric determination of naproxen. J Iran Chem Soc 12:2133–2140

    Article  CAS  Google Scholar 

  28. Hegde RN, Hosamani RR, Nandibewoor ST (2009) Electrochemical oxidation and determination of theophylline at a carbon paste electrode using cetyltrimethyl ammonium bromide as enhancing agent. Anal Lett 42:2665–2682

    Article  CAS  Google Scholar 

  29. Shahrokhian S, Asadian E (2010) Simultaneous voltammetric determination of ascorbic acid, acetaminophen and isoniazid using thionine immobilized multi-walled carbon nanotube modified carbon paste electrode. Electrochim Acta 55:666–672

    Article  CAS  Google Scholar 

  30. Jiang L, Gu S, Ding Y, Jiang F, Zhang Z (2014) Facile and novel electrochemical preparation of a graphene–transition metal oxide nanocomposite for ultrasensitive electrochemical sensing of acetaminophen and phenacetin. Nanoscale 6:207–214

    Article  CAS  Google Scholar 

  31. Engin C, Yilmaz S, Saglikoglu G, Yagmur S, Sadikoglu M (2015) Electroanalytical investigation of paracetamol on glassy carbon electrode by voltammetry. Int J Electrochem Sci 10:1916–1925

    Google Scholar 

  32. Fan Y, Liu JH, Lu HT, Zhang Q (2011) Electrochemical behavior and voltammetric determination of paracetamol on Nafion/TiO2–graphene modified glassy carbon electrode. Colloids Surf B 85:289–292

    Article  CAS  Google Scholar 

  33. Zhang Y, Luo L, Ding Y, Liu X, Qian Z (2010) A highly sensitive method for determination of paracetamol by adsorptive strip** voltammetry using a carbon paste electrode modified with nanogold and glutamic acid. Microchim Acta 171:133–138

    Article  CAS  Google Scholar 

  34. Adhoum N, Monser L, Toumi M, Boujlel K (2003) Determination of naproxen in pharmaceuticals by differential pulse voltammetry at a platinum electrode. Anal Chim Acta 495:69–75

    Article  CAS  Google Scholar 

  35. Tashkhourian J, Hemmateenejad B, Beigizadeh H, Hosseini-Sarvari M, Razmi Z (2014) ZnO nanoparticles and multiwalled carbon nanotubes modified carbon paste electrode for determination of naproxen using electrochemical techniques. J Electroanal Chem 714:103–108

    Article  Google Scholar 

  36. Baj-Rossi C, Jost TR, Cavallini A, Grassi F, De Micheli G, Carrara S (2014) Continuous monitoring of naproxen by a cytochrome P450-based electrochemical sensor. Biosens Bioelectron 53:283–287

    Article  CAS  Google Scholar 

  37. Montes RH, Stefano JS, Richter EM, Munoz RA (2014) Exploring multiwalled carbon nanotubes for naproxen detection. Electroanalysis 26:1449–1453

    Article  CAS  Google Scholar 

  38. Peng A, Yan H, Luo C, Wang G, Ye X, Ding H (2017) Electrochemical determination of theophylline pharmacokinetic under the effect of roxithromycin in rats by the MWNTs/Au/poly-L-lysine modified sensor. Int J Electrochem Sci 12:330–346

    Article  CAS  Google Scholar 

  39. Zhuang X, Chen D, Wang S, Liu H, Chen L (2017) Manganese dioxide nanosheet-decorated ionic liquid-functionalized graphene for electrochemical theophylline biosensing. Sensors Actuators B Chem 251:185–191

    Article  CAS  Google Scholar 

  40. da Silva W, Ghica ME, Brett C (2018) Gold nanoparticle decorated multiwalled carbon nanotube modified electrodes for the electrochemical determination of theophylline. Anal Methods 10:5634–5642

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the Ministry of Science and Technology (MOST 106-2113-M-027-003), Taiwan, ROC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen-Ming Chen.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 4656 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutharani, B., Ranganathan, P., Chen, SM. et al. Simultaneous voltammetric determination of acetaminophen, naproxen, and theophylline using an in-situ polymerized poly(acrylic acid) nanogel covalently grafted onto a carbon black/La2O3 composite. Microchim Acta 186, 651 (2019). https://doi.org/10.1007/s00604-019-3752-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3752-7

Keywords

Navigation