Log in

A novel signal amplification strategy based on the use of copper nanoclusters for ratiometric fluorimetric determination of o-phenylenediamine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Copper nanoclusters (CuNCs) were synthesized starting from glutathione and copper(II) nitrate. They show blue fluorescence peaking at 432 nm when excited at 334 nm. In the presence of o-phenylenediamine (OPD), the blue fluorescence is decreased, but a yellow fluorescence appears with a peak at 557 nm. UV-visible absorptiometry, fluorometry and fluorescence lifetime measurements were used to show that OPD is oxidized by the small fraction of copper(II) ions present in the CuNCs to form the oxidized form of o-phenylenediamine (oxOPD) which displays weak yellow fluorescence, while the blue fluorescence decreases. The ratio of fluorescences at 557 and 432 nm increases linearly in the 0.15 to 110 μg·L−1 OPD concentration range, and the detection limit is 93 ng·L−1. Compared to the method based on the use of dissolved Cu(II), the employment of CuNCs reduces the detection limit by a factor of 40. The method was applied to the determination of OPD in spiked environmental water and industrial wastewater samples. Recoveries ranged from 96.8 to 100.3%.

Schematic presentation of a ratiometric fluorometric method for detection of o-phenylenediamine (OPD) based on copper nanoclusters (CuNCs). OPD is oxidized by Cu2+ present in CuNCs to form the oxidized form of o-phenylenediamine (oxOPD). FRET occurred between oxOPD and CuNCs, and the F557/F432 value is amplified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Qi H, Yue S, Bi S, Ding C, Song W (2018) Isothermal exponential amplification techniques: from basic principles to applications in electrochemical biosensors. Biosens Bioelectron 110:207–217. https://doi.org/10.1016/j.bios.2018.03.065

    Article  CAS  PubMed  Google Scholar 

  2. Ding C, Zhang W, Wang W, Chen Y, Li X (2015) Amplification strategies using electrochemiluminescence biosensors for the detection of DNA, bioactive molecules and cancer biomarkers. Trends Anal Chem 65:137–150. https://doi.org/10.1016/j.trac.2014.10.015

    Article  CAS  Google Scholar 

  3. Li J, Fu W, Bao J, Wang Z, Dai Z (2018) Fluorescence regulation of copper nanoclusters via DNA template manipulation toward design of a high signal-to-noise ratio biosensor. ACS Appl Mater Interfaces 10:6965–6971. https://doi.org/10.1021/acsami.7b19055

    Article  CAS  PubMed  Google Scholar 

  4. Gao X, Wang X, Li Y, He J, Yu HZ (2018) Exonuclease I-hydrolysis assisted electrochemical quantitation of surface-immobilized DNA hairpins and improved HIV-1 gene detection. Anal Chem 90:8147–8153. https://doi.org/10.1021/acs.analchem.8b01445

    Article  CAS  PubMed  Google Scholar 

  5. Li B, Xu L, Chen Y, Zhu W, Shen X, Zhu C, Luo J, Li X, Hong J, Zhou X (2017) Sensitive and label-free fluorescent detection of transcription factors based on DNA-ag nanoclusters molecular beacons and exonuclease III-assisted signal amplification. Anal Chem 89:7316–7323. https://doi.org/10.1021/acs.analchem.7b00055

    Article  CAS  PubMed  Google Scholar 

  6. Liu S, Wang Y, Zhang S, Wang L (2017) Exonuclease-catalyzed methylene blue releasing and enriching onto a dodecanethiol monolayer for an immobilization-free and highly sensitive electrochemical nucleic acid biosensor. Langmuir 33:5099–5107. https://doi.org/10.1021/acs.langmuir.6b04671

    Article  CAS  PubMed  Google Scholar 

  7. Du YC, Cui YX, Li XY, Sun GY, Zhang YP, Tang AN, Kim K, Kong DM (2018) Terminal deoxynucleotidyl transferase and T7 exonuclease-aided amplification strategy for ultrasensitive detection of uracil-DNA glycosylase. Anal Chem 90:8629–8634. https://doi.org/10.1021/acs.analchem.8b01928

    Article  CAS  PubMed  Google Scholar 

  8. Wang Y, Bai J, Huo B, Yuan S, Zhang M, Sun X, Peng Y, Li S, Wang J, Ning B, Gao Z (2018) Upconversion fluorescent aptasensor for polychlorinated biphenyls detection based on nicking endonuclease and hybridization chain reaction dual-amplification strategy. Anal Chem 90:9936–9942. https://doi.org/10.1021/acs.analchem.8b02159

    Article  CAS  PubMed  Google Scholar 

  9. Miao X, Cheng Z, Ma H, Li Z, Xue N, Wang P (2018) Label-free platform for microRNA detection based on the fluorescence quenching of positively charged gold nanoparticles to silver nanoclusters. Anal Chem 90:1098–1103. https://doi.org/10.1021/acs.analchem.7b01991

    Article  CAS  PubMed  Google Scholar 

  10. Peng W, Zhao Q, Piao J, Zhao M, Huang Y, Zhang B, Gao W, Zhou D, Shu G, Gong X, Chang J (2018) Ultra-sensitive detection of microRNA-21 based on duplex-specific nuclease-assisted target recycling and horseradish peroxidase cascading signal amplification. Sensors Actuators B Chem 263:289–297. https://doi.org/10.1016/j.snb.2018.02.143

    Article  CAS  Google Scholar 

  11. Zhou F, Li B (2015) Exonuclease III-assisted target recycling amplification coupled with liposome-assisted amplification: one-step and dual-amplification strategy for highly sensitive fluorescence detection of DNA. Anal Chem 87:7156–7162. https://doi.org/10.1021/acs.analchem.5b00993

    Article  CAS  PubMed  Google Scholar 

  12. **ao M, Man T, Zhu C, Pei H, Shi J, Li L, Qu X, Shen X, Li J (2018) MoS2 nanoprobe for microRNA quantification based on duplex-specific nuclease signal amplification. ACS Appl Mater Interfaces 10:7852–7858. https://doi.org/10.1021/acsami.7b18984

    Article  CAS  PubMed  Google Scholar 

  13. Liu Y, Zhu D, Cao Y, Ma W, Yu Y, Guo M, **ng X (2018) A novel universal signal amplification probe-based electrochemiluminescence assay for sensitive detection of pathogenic bacteria. Electrochem Commun 85:11–14. https://doi.org/10.1016/j.elecom.2017.10.012

    Article  CAS  Google Scholar 

  14. Lu Q, Chen X, Liu D, Wu C, Liu M, Li H, Zhang Y, Yao S (2018) Synergistic electron transfer effect-based signal amplification strategy for the ultrasensitive detection of dopamine. Talanta 182:428–432. https://doi.org/10.1016/j.talanta.2018.01.068

    Article  CAS  PubMed  Google Scholar 

  15. Song D, Yang R, Fang SY, Liu YP, Long F (2018) A FRET-based dual-color evanescent wave optical fiber aptasensor for simultaneous fluorometric determination of aflatoxin M1 and ochratoxin A. Microchim Acta 185:508. https://doi.org/10.1007/s00604-018-3046-5

    Article  CAS  Google Scholar 

  16. Saberi Z, Rezaei B, Faroukhpour H, Ensafi AA (2018) A fluorometric aptasensor for methamphetamine based on fluorescence resonance energy transfer using cobalt oxyhydroxide nanosheets and carbon dots. Microchim Acta 185:303. https://doi.org/10.1007/s00604-018-2842-2

    Article  CAS  Google Scholar 

  17. Li N, Liu SG, Fan YZ, Ju YJ, ** on emission to highly sensitive picric acid sensing. Anal Chim Acta 1013:63–70. https://doi.org/10.1016/j.aca.2018.01.049

    Article  CAS  PubMed  Google Scholar 

  18. Chen S, Yu YL, Wang JH (2018) Inner filter effect-based fluorescent sensing systems: a review. Anal Chim Acta 999:13–26. https://doi.org/10.1016/j.aca.2017.10.026

    Article  CAS  PubMed  Google Scholar 

  19. Fang H, **e N, Ou M, Huang J, Li W, Wang Q, Liu J, Yang X, Wang K (2018) Detection of nucleic acids in complex samples via magnetic microbead-assisted catalyzed hairpin assembly and “DD–A” FRET. Anal Chem 90:7164–7170. https://doi.org/10.1021/acs.analchem.8b01330

    Article  CAS  PubMed  Google Scholar 

  20. Yan X, Li H, Han X, Su X (2015) A ratiometric fluorescent quantum dots based biosensor for organophosphorus pesticides detection by inner-filter effect. Biosens Bioelectron 74:277–283. https://doi.org/10.1016/j.bios.2015.06.020

    Article  CAS  PubMed  Google Scholar 

  21. Xu S, Nie Y, Jiang L, Wang J, Xu G, Wang W, Luo X (2018) Polydopamine nanosphere/gold nanocluster (AuNC)-based nanoplatform for dual color simultaneous detection of multiple tumor-related microRNAs with DNase-I-assisted target recycling amplification. Anal Chem 90:4039–4045. https://doi.org/10.1021/acs.analchem.7b05253

    Article  CAS  PubMed  Google Scholar 

  22. Wang Y, Yao G, Zhu P, Hu X (2011) Indirect biamperometric determination of o-phenylenediamine in lab-on-valve format using reversible indicating redox system. Analyst 136:829–834. https://doi.org/10.1039/c0an00713g

    Article  CAS  PubMed  Google Scholar 

  23. Das NK, Ghosh S, Priya A, Datta S, Mukherjee S (2015) Luminescent copper nanoclusters as a specific cell-imaging probe and a selective metal ion sensor. J Phys Chem C 119:24657–24664. https://doi.org/10.1021/acs.jpcc.5b08123

    Article  CAS  Google Scholar 

  24. Yu RJ, Sun JJ, Song H, Tian JZ, Li DW, Long YT (2017) Real-time sensing of o-phenylenediamine oxidation on gold nanoparticles. Sensors 17:530–536. https://doi.org/10.3390/s17030530

    Article  CAS  Google Scholar 

  25. Liu S, Qin XY, Tian JQ, Wang L, Sun XP (2012) Photochemical preparation of fluorescent 2,3-diaminophenazine nanoparticles for sensitive and selective detection of hg (II) ions. Sensors Actuators B Chem 171-172:886–890. https://doi.org/10.1016/j.snb.2012.05.089

    Article  CAS  Google Scholar 

  26. Li R, Lei C, Zhao XE, Gao Y, Gao H, Zhu S, Wang H (2018) A label-free fluorimetric detection of biothiols based on the oxidase-like activity of ag+ ions. Spectrochim Acta A 188:20–25. https://doi.org/10.1016/j.saa.2017.06.056

    Article  CAS  Google Scholar 

  27. Zhao XE, Lei C, Gao Y, Gao H, Zhu S, Yang X, You J, Wang H (2017) A ratiometric fluorescent nanosensor for the detection of silver ions using graphene quantum dots. Sensors Actuators B Chem 253:239–246. https://doi.org/10.1016/j.snb.2017.06.086

    Article  CAS  Google Scholar 

  28. Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184:1899–1914. https://doi.org/10.1007/s00604-017-2318-9

    Article  CAS  Google Scholar 

  29. Li N, Gu Y, Gao M, Wang Z, **ao D, Li Y, Lin R, He H (2015) Colorimetric determination of o-phenylenediamine in water samples based on the formation of silver nanoparticles as a colorimetric probe. Spectrochim Acta A 140:328–333. https://doi.org/10.1016/j.saa.2014.12.053

    Article  CAS  Google Scholar 

  30. Ma P, Liang F, Wang D, Yang Q, Cao B, Song D, Gao D, Wang X (2015) Selective determination of o-phenylenediamine by surface-enhanced raman spectroscopy using silver nanoparticles decorated with α-cyclodextrin. Microchim Acta 182:167–174. https://doi.org/10.1007/s00604-014-1314-6

    Article  CAS  Google Scholar 

  31. Wang SP, Huang TH (2005) Separation and determination of aminophenols and phenylenediamines by liquid chromatography and micellar electrokinetic capillary chromatography. Anal Chim Acta 534:207–214. https://doi.org/10.1016/j.aca.2004.11.038

    Article  CAS  Google Scholar 

  32. Dong S, Chi L, Zhang S, He P, Wang Q, Fang Y (2008) Simultaneous determination of phenylenediamine isomers and dihydroxybenzene isomers in hair dyes by capillary zone electrophoresis coupled with amperometric detection. Anal Bioanal Chem 391:653–659. https://doi.org/10.1007/s00216-008-2053-5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21575043, 21275056, 21605052, 51478196); and the Platform Construction Project of Guangzhou Science Technology and Innovation Commission (No. 15180001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Yu or Bixia Lin.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 2.99 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Yu, Y., Lin, B. et al. A novel signal amplification strategy based on the use of copper nanoclusters for ratiometric fluorimetric determination of o-phenylenediamine. Microchim Acta 186, 206 (2019). https://doi.org/10.1007/s00604-019-3327-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3327-7

Keywords

Navigation