Log in

Voltammetric sensing of dopamine based on a nanoneedle array consisting of NiCo2S4 hollow core-shells on a nickel foam

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An array consisting of homogeneous NiCo2S4 hollow core-shell nanoneedles was fabricated and is shown to enable sensitive electrochemical determination of dopamine (DA). The array was grown directly on a nickel foam (NF) substrate by a two-step hydrothermal process. The hierarchical nanoarray consists of a homogeneous NiCo2S4 nanoneedle core and a NiCo2S4 nanosheet shell. A 3-dimensional micro/nano structure is formed due to the presence of the micropores of the NF. The electrode was characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Compared to a plain NF electrode, the NiCo2S4-modified NF electrode displays higher electrocatalytic activity for the oxidation of DA by differential pulse voltammetry (DPV). The sensor, best operated at a typical working voltage of 134 mV (vs. saturated calomel electrode), has a linear response in the 0.5–100 μM DA concentration range and a 0.2 μM detection limit (at S/N = 3). The electrode is selective over ascorbic acid and uric acid.

Schematic presentation of an electrochemical sensor for selective determination of dopamine based on the use of a homogeneous NiCo2S4 hollow core-shell nanoneedle array on nickel foam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang D, Xu F, Hu J, Lin M (2017) Phytic acid/graphene oxide nanocomposites modified electrode for electrochemical sensing of dopamine. Mat Sci Eng C 71:1086–1089

    Article  CAS  Google Scholar 

  2. Lavanya N, Fazio E, Neri F, Bonavita A, Leonardi SG, Neri G, Sekar C (2015) Simultaneous electrochemical determination of epinephrine and uric acid in the presence of ascorbic acid using SnO2/graphene nanocomposite modified glassy carbon electrode. Sensor Actuat B 221:1412–1422

    Article  CAS  Google Scholar 

  3. Amin D (1986) Titrimetric determination of catecholamines and related compounds via bromine oxidation and substitution. Analyst 111:255–257

    Article  CAS  Google Scholar 

  4. Zhou Y, Yan H, **e Q, Huang S, Liu J, Li Z, Ma M, Yao S (2013) Simultaneous analysis of dopamine and homovanillic acid by high-performance liquid chromatography with wall-jet/thin-layer electrochemical detection. Analyst 138:7246–7253

    Article  CAS  Google Scholar 

  5. Abbaspour A, Khajehzadeh A, Ghaffarinejad A (2009) A simple and cost-effective method, as an appropriate alternative for visible spectrophotometry: development of a dopamine biosensor. Analyst 134:1692–1698

    Article  CAS  Google Scholar 

  6. Wang N, Dai H, Wang D, Chen L, Ma H, Lin M (2016) Electrochemical detection of dopamine based on a SnO2/polypyrrole nanocomposite modified glassy carbon electrode. Nanosci Nanotech Let 8:581–585

    Article  Google Scholar 

  7. Yusoff N, Pandikumar A, Ramaraj R, Ngee LH, Huang NM (2015) Gold nanoparticle based optical and electrochemical sensing of dopamine. Microchim Acta 182:2091–2114

    Article  CAS  Google Scholar 

  8. Mei LP, Feng JJ, Wu L, Chen JR, Shen L, **e Y, Wang AJ (2016) A glassy carbon electrode modified with porous Cu2O nanospheres on reduced graphene oxide support for simultaneous sensing of uric acid and dopamine with high selectivity over ascorbic acid. Microchim Acta 183:2039–2046

    Article  CAS  Google Scholar 

  9. Deng K, Li X, Huang H (2016) A glassy carbon electrode modified with a nickel(II) norcorrole complex and carbon nanotubes for simultaneous or individual determination of ascorbic acid, dopamine, and uric acid. Microchim Acta 183:2139–2145

    Article  CAS  Google Scholar 

  10. Lin M (2015) A dopamine electrochemical sensor based on gold nanoparticles/over-oxidized polypyrrole nanotube composite arrays. RSC Adv 5:9848–9851

    Article  CAS  Google Scholar 

  11. Dai H, Lin M, Wang N, Xu F, Wang D, Ma H (2017) Nickel-foam-supported Co3O4 nanosheets/PPy nanowire heterostructure for non-enzymatic glucose sensing. ChemElectroChem 4:1135–1140

    Article  CAS  Google Scholar 

  12. Habibi B, Pournaghi-Azar MH (2010) Simultaneous determination of ascorbic acid, dopamine and uric acid by use of a MWCNT modified carbon-ceramic electrode and differential pulse voltammetry. Electrochim Acta 55:5492–5498

    Article  CAS  Google Scholar 

  13. Dai H, Wang N, Wang D, Zhang X, Ma H, Lin M (2016) Voltammetric uric acid sensor based on a glassy carbon electrode modified with a nanocomposite consisting of polytetraphenylporphyrin, polypyrrole, and graphene oxide. Microchim Acta 183:3053–3059

    Article  CAS  Google Scholar 

  14. Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135:9267–9270

    Article  CAS  Google Scholar 

  15. Wei H, Wang E (2008) Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem 80:2250–2254

    Article  CAS  Google Scholar 

  16. Nagaraju G, Raju GSR, Ko YH, Yu JS (2016) Hierarchical Ni-Co layered double hydroxide nanosheets entrapped on conductive textile fibers: a cost-effective and flexible electrode for high-performance pseudocapacitors. Nanoscale 8:812–825

    Article  CAS  Google Scholar 

  17. Huang W, Lin T, Cao Y, Lai X, Peng J, Tu J (2017) Hierarchical NiCo2O4 hollow sphere as a peroxidase mimetic for colorimetric detection of H2O2 and glucose. Sensors 17:217

    Article  Google Scholar 

  18. Hun X, Wang S, Wang S, Zhao J, Luo X (2017) A photoelectrochemical sensor for ultrasensitive dopamine detection based on single-layer NanoMoS2 modified gold electrode. Sensor Actuat B 249:83–89

    Article  Google Scholar 

  19. Wu W, Li Y, ** J, Wu H, Wang S, **a Q (2016) A novel nonenzymatic electrochemical sensor based on 3D flower-like Ni7S6 for hydrogen peroxide and glucose. Sensor Actuat B 232:633–641

    Article  CAS  Google Scholar 

  20. Liu Q, ** J, Zhang J (2013) NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. ACS Appl Mater Interfaces 5:5002–5008

    Article  CAS  Google Scholar 

  21. Du Y, Zhu X, Zhou X, Hu L, Dai Z, Bao J (2015) Co3S4 porous nanosheets embedded in graphene sheets as high-performance anode materials for lithium and sodium storage. J Mater Chem A 3:6787–6791

    Article  CAS  Google Scholar 

  22. Nguyen VH, Lamiel C, Shim JJ (2015) Hierarchical mesoporous graphene@Ni-Co-S arrays on nickel foam for high-performance supercapacitors. Electrochim Acta 161:351–357

    Article  CAS  Google Scholar 

  23. Lamiel C, Shim JJ (2015) Hierarchical mesoporous graphene@ Ni-Co-S arrays on nickel foam for high-performance supercapacitors. Electrochim Acta 161:351–357

    Article  Google Scholar 

  24. Liu B, Liu B, Wang Q, Wang X, **ang Q, Chen D, Shen G (2013) New energy storage option: toward ZnCo2O4 nanorods/nickel foam architectures for high-performance supercapacitors. ACS Appl Mater Inter 5:10011–10017

    Article  CAS  Google Scholar 

  25. Khani H, Wipf DO (2017) Iron oxide Nanosheets and pulse-electrodeposited Ni-Co-S Nanoflake arrays for high-performance charge storage. ACS Appl Mater Inter 9:6967–6978

    Article  CAS  Google Scholar 

  26. Dai H, Cao P, Chen D, Li Y, Wang N, Ma H, Lin M (2018) Ni-Co-S/PPy core-shell nanohybrid on nickel foam as a non-enzymatic electrochemical glucose sensor. Synthetic Met 235:97–102

    Article  CAS  Google Scholar 

  27. Li LQ, Dai ZY, Zhang YF, Yang J, Huang W, Dong XC (2015) Carbon@NiCo2S4 nanorods: an excellent electrode material for supercapacitors. RSC Adv 5:83408–83414

    Article  CAS  Google Scholar 

  28. Li D, Gong Y, Pan C (2016) Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors. Sci Rep 6:29788

    Article  Google Scholar 

  29. Lu F, Zhou M, Li W, Weng Q, Li C, Xue Y, Jiang X, Zeng X, Bando Y, Golberg D (2016) Engineering sulfur vacancies and impurities in NiCo2S4 nanostructures toward optimal supercapacitive performance. Nano Energy 26:313–323

    Article  CAS  Google Scholar 

  30. Mi L, Wei W, Huang S, Cui S, Zhang W, Hou H, Chen W (2015) A nest-like Ni@Ni1.4Co1.6S2 electrode for flexible high-performance rolling supercapacitor device design. J Mater Chem A 3:20973–20982

    Article  CAS  Google Scholar 

  31. Zheng Y, Huang Z, Zhao C, Weng S, Zheng W, Lin X (2013) A gold electrode with a flower-like gold nanostructure for simultaneous determination of dopamine and ascorbic acid. Microchim Acta 180:537–544

    Article  CAS  Google Scholar 

  32. Shankar SS, Swamy BEK, Mahanthesha KR, Sathisha TV, Vishwanath CC (2013) Acetanilide modified carbon paste electrode for the electrochemical detection of dopamine: a cyclic voltammetric study. Anal Bioanal Electrochem 5:19–31

    CAS  Google Scholar 

  33. Du J, Yue R, Ren F, Yao Z, Jiang F, Yang P, Du Y (2013) Simultaneous determination of uric acid and dopamine using a carbon fiber electrode modified by layer-by-layer assembly of graphene and gold nanoparticles. Gold Bull 46:137–144

    Article  Google Scholar 

  34. Tong Y, Li Z, Lu X, Yang L, Sun W, Nie G, Wang Z, Wang C (2013) Electrochemical determination of dopamine based on electrospun CeO2/Au composite nanofibers. Electrochim Acta 95:12–17

    Article  CAS  Google Scholar 

  35. Yao Z, Yang X, Niu Y, Wu F, Hu Y, Yang Y (2017) Voltammetric dopamine sensor based on a gold electrode modified with reduced graphene oxide and Mn3O4 on gold nanoparticles. Microchim Acta 184:2081–2088

    Article  CAS  Google Scholar 

  36. Rao D, Zhang X, Sheng Q, Zheng J (2016) Highly improved sensing of dopamine by using glassy carbon electrode modified with MnO2, graphene oxide, carbon nanotubes and gold nanoparticles. Microchim Acta 183(9):2597–2604

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Young Scholars Program of Shandong University and Shandong Provincial Natural Science Foundation, China (ZR2017QB004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Lin.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, H., Chen, D., Li, Y. et al. Voltammetric sensing of dopamine based on a nanoneedle array consisting of NiCo2S4 hollow core-shells on a nickel foam. Microchim Acta 185, 157 (2018). https://doi.org/10.1007/s00604-018-2718-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2718-5

Keywords

Navigation