Log in

A turn-on fluorescent nanoprobe for lead(II) based on the aggregation of weakly associated gold(I)-glutathione nanoparticles

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a method for ethanol induced formation of a fluorescent nanoprobe for sensitive fluorometric “turn-on” detection of Pb2+ based on aggregation-induced emission (AIE) of the Au(I)-glutathione (GSH) complex. On addition of Pb2+, their strong interaction with GSH causes the Au(I)-SG complexes to come in close proximity, and this results in a turn-on fluorescence with a strong emission peaking at 595 nm. The findings were utilized to design a method for quantitation of Pb2+. Interestingly, sensitivity is largely enhanced in the presence of ethanol due to the formation of dense Au(I)-SG nanoparticles. The fraction of ethanol is optimized. Response to Pb2+ occurs within a few seconds. The assay covers the 2.0 to 350 μM Pb(II) concentration range, has a 0.1 μM limit of detection, and has a satisfactory selectivity over other environmental metal ions.

Au(I)-SG complexes can form dense Au(I)-SG nanoparticles induced by ethanol. The solvent-stimulated Au(I)-SG nanoparticles show high sensitivity towards Pb2+ because they facilitate aurophilic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Jiang Z, Fan Y, Liang A, Wen G, Liu Q, Li T (2010) Resonance scattering spectral detection of trace Pb2+ using aptamer-modified AuPd nanoalloy as probe. Plasmonics 5:375–381. doi:10.1007/s11468-010-9153-8

    Article  CAS  Google Scholar 

  2. Gupta N, Amritphale SS, Chandra N (2009) Removal of lead from aqueous solution by hybrid precursor prepared by rice hull. J Hazard Mater 163:1194–1198. doi:10.1016/j.jhazmat.2008.07.113

    Article  CAS  Google Scholar 

  3. Liu Y, Yan J, Yuan D, Li Q, Wu X (2013) The study of lead removal from aqueous solution using an electrochemical method with a stainless steel net electrode coated with single wall carbon nanotubes. Chem Eng J 218:81–88. doi:10.1016/j.cej.2012.12.020

    Article  CAS  Google Scholar 

  4. Woodhead J, Hergt J, Meffre S, Large RR, Danyushevsky L, Gilbert S (2009) In situ Pb-isotope analysis of pyrite by laser ablation (multi-collector and quadrupole) ICPMS. Chem Geol 262:344–354. doi:10.1016/j.chemgeo.2009.02.003

    Article  CAS  Google Scholar 

  5. **ong S, Wang M, Cai D, Li Y, Gu N, Wu Z (2013) Electrochemical detection of Pb(II) by glassy carbon electrode modified with amine-functionalized magnetite nanoparticles. Analyt Lett 46:912–922. doi:10.1080/00032719.2012.747094

    Article  CAS  Google Scholar 

  6. Wei Y, Yang R, Liu J-H, Huang X-J (2013) Selective detection toward Hg(II) and Pb(II) using polypyrrole/carbonaceous nanospheres modified screen-printed electrode. Electrochim Acta 105:218–223. doi:10.1016/j.electacta.2013.05.004

    Article  CAS  Google Scholar 

  7. Cui L, Wu J, Ju H (2015) Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens Bioelectron 63:276–286. doi:10.1016/j.bios.2014.07.052

    Article  CAS  Google Scholar 

  8. Bravo-Sánchez LR, Riva DL, Costa-Fernández JM, Pereiro R, Sanz-Medel A (2001) Determination of lead and mercury in sea water by preconcentration in a flow injection system followed by atomic absorption spectrometry detection. Talanta 55:1071–1078. doi:10.1016/S0039-9140(01)00523-9

    Article  Google Scholar 

  9. Zhang Y, Yan M, Wang S, Jiang J, Gao P, Zhang G, Dong C, Shuang S (2016) Facile one-pot synthesis of Au(0)@Au(i)–NAC core–shell nanoclusters with orange-yellow luminescence for cancer cell imaging. RSC Adv 6:8612–8619. doi:10.1039/c5ra22813a

    Article  CAS  Google Scholar 

  10. Luo Z, Yuan X, Yu Y, Zhang Q, Leong DT, Lee JY, **e J (2012) From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J Am Chem Soc 134:16662–16670. doi:10.1021/ja306199p

    Article  CAS  Google Scholar 

  11. Hong Y, Lam JW, Tang BZ (2009) Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun 29:4332–4353. doi:10.1039/b904665h

    Article  Google Scholar 

  12. Costa PJ, Calhorda MJ (2006) A DFT and MP2 study of luminescence of gold(I) complexes. Inorg Chim Acta 359:3617–3624. doi:10.1016/j.ica.2005.12.036

    Article  CAS  Google Scholar 

  13. Liang J, Chen Z, Yin J, Yu GA, Liu SH (2013) Aggregation-induced emission (AIE) behavior and thermochromic luminescence properties of a new gold(I) complex. Chem Commun 49:3567–3569. doi:10.1039/c3cc00157a

    Article  CAS  Google Scholar 

  14. Abdou HE, Mohamed AA, Fackler JP, Burini A, Galassi R, López-de-Luzuriaga JM, Olmos ME (2009) Structures and properties of gold(I) complexes of interest in biochemical applications. Coord Chem Rev 253:1661–1669. doi:10.1016/j.ccr.2009.02.010

    Article  CAS  Google Scholar 

  15. Wu Z, ** R (2010) On the ligand's role in the fluorescence of gold nanoclusters. Nano Lett 10:2568–2573. doi:10.1021/nl101225f

    Article  CAS  Google Scholar 

  16. Lavenn C, Okhrimenko L, Guillou N, Monge M, Ledoux G, Dujardin C, Chiriac R, Fateeva A, Demessence A (2015) A luminescent double helical gold(i)–thiophenolate coordination polymer obtained by hydrothermal synthesis or by thermal solid-state amorphous-to-crystalline isomerization. J Mater Chem C 3:4115–4125. doi:10.1039/c5tc00119f

    Article  CAS  Google Scholar 

  17. Hutchings GJ, Brust M, Schmidbaur H (2008) Gold--an introductory perspective. Chem Soc Rev 37:1759–1765. doi:10.1039/b810747p

    Article  CAS  Google Scholar 

  18. Theilacker K, Schlegel HB, Kaupp M, Schwerdtfeger P (2015) Relativistic and solvation effects on the stability of Gold(III) halides in aqueous solution. Inorg Chem 54(20):9869–9875. doi:10.1021/acs.inorgchem.5b01632

    Article  CAS  Google Scholar 

  19. Ji L, Guo Y, Hong S, Wang Z, Wang K, Chen X, Zhang J, Hu J, Pei R (2015) Label-free detection of Pb2+ based on aggregation-induced emission enhancement of Au-nanoclusters. RSC Adv 5:36582–36586. doi:10.1039/c5ra03449c

    Article  CAS  Google Scholar 

  20. He X, Yam VW-W (2011) Luminescent gold(I) complexes for chemosensing. Coord Chem Rev 255:2111–2123. doi:10.1016/j.ccr.2011.02.003

    Article  CAS  Google Scholar 

  21. Guo Y, Tong X, Ji L, Wang Z, Wang H, Hu J, Pei R (2015) Visual detection of Ca(2+) based on aggregation-induced emission of Au(I)-Cys complexes with superb selectivity. Chem Commun 51:596–598. doi:10.1039/c4cc07592g

    Article  CAS  Google Scholar 

  22. Liu CJ, Ling J, Zhang XQ, Peng J, Cao QE, Ding ZT (2013) Synergistic aggregating of Au(I)–glutathione complex for fluorescence “turn-on” detection of Pb(II). Anal Methods 5:5584–5588. doi:10.1039/c3ay40823j

    Article  CAS  Google Scholar 

  23. Beqa L, Singh AK, Khan SA, Senapati D, Arumugam SR, Ray PC (2011) Gold nanoparticle-based simple colorimetric and ultrasensitive dynamic light scattering assay for the selective detection of Pb(II) from paints, plastics, and water samples. ACS Appl Mater Inter 3:668–673. doi:10.1021/am101118h

    Article  CAS  Google Scholar 

  24. Li X, Xu B, Lu H, Wang Z, Zhang J, Zhang Y, Dong Y, Ma K, Wen S, Tian W (2013) Label-free fluorescence turn-on detection of Pb2+based on AIE-active quaternary ammonium salt of 9,10-distyrylanthracene. Anal Methods 5:438–441. doi:10.1039/c2ay26202a

    Article  CAS  Google Scholar 

  25. Yuan M, Song ZH, Fei JY, Wang XL, Xu F, Cao H, Yu JS (2017) Aptasensor for lead(II) based on the use of a quartz crystal microbalance modified with gold nanoparticles. Microchim Acta 184:1397–1403. doi:10.1007/s00604-017-2135-1

    Article  CAS  Google Scholar 

  26. Mehta VN, Solanki JN, Kailasa SK (2014) Selective visual detection of Pb(II) ion via gold nanoparticles coated with a dithiocarbamate-modified 4′-aminobenzo-18-crown-6. Microchim Acta 181:1905–1915. doi:10.1007/s00604-014-1287-5

    Article  CAS  Google Scholar 

  27. Wang C, Cheng H, Sun Y, Xu Z, Lin H, Lin Q, Zhang C (2014) Nanoclusters prepared from a silver/gold alloy as a fluorescent probe for selective and sensitive determination of lead(II). Microchim Acta 182:695–701. doi:10.1007/s00604-014-1375-6

    Article  Google Scholar 

  28. Wang XF, **ang LP, Wang YS, Xue JH, Zhu YF, Huang YQ, Chen SH, Tang X (2016) A “turn-on” fluorescence assay for lead(II) based on the suppression of the surface energy transfer between acridine orange and gold nanoparticles. Microchim Acta 183:1333–1339. doi:10.1007/s00604-015-1738-7

    Article  CAS  Google Scholar 

  29. Alvarez MM, Khoury JT, Schaaff TG, Shafigullin M, Vezmar I, Whetten RL (1997) Critical sizes in the growth of Au clusters. Chem Phys Lett 266:91–98. doi:10.1016/S0009-2614(96)01535-7

    Article  CAS  Google Scholar 

  30. Witkiewicz PL, Shaw CF (1981) Witkiewicz PL, Shaw CF.. Oxidative cleavage of peptide and protein disulphide bonds by gold(III): a mechanism for gold toxicity. Chem Commun 21:1111–1114. doi:10.1039/c39810001111

    Article  Google Scholar 

  31. Hassion FX, Cole RH (1955) Dielectric properties of liquid ethanol and 2-propanol. J Chem Phy 23:1756–1761. doi:10.1063/1.1740575

    Article  CAS  Google Scholar 

  32. Archer DG, Wang P (1990) The dielectric constant of water and Debye-Hückel limiting law slopes. J Phys Chem Ref Data 19:371. doi:10.1063/1.555853

    Article  CAS  Google Scholar 

  33. Ito H, Saito T, Oshima N, Kitamura N, Ishizaka S, Hinatsu Y, Wakeshima M, Kato M, Tsuge K, Sawamura M (2008) Reversible mechanochromic luminescence of [(C6F5Au)2(μ-1,4-diisocyanobenzene)]. J Am Chem Soc 130:10044–10045. doi:10.1021/ja8019356

    Article  CAS  Google Scholar 

  34. Puddephatt RJ (2001) Coordination polymers: polymers, rings and oligomers containing gold(I) centres. Coord Chem Rev 216:313–332. doi:10.1016/S0010-8545(00)00411-2

    Article  Google Scholar 

  35. Vickery JC, Olmstead MM, Fung EY, Balch AL (1997) Solvent-stimulated luminescence from the supramolecular aggregation of a trinuclear gold(I) complex that displays extensive intermolecular Au-Au interactions. Angew Chem Int Ed 36:1179–1181. doi:10.1002/anie.199711791

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully appreciate the support from the National Natural Science Foundation of China (81671756 and 81271634), and Science and Technology Foundation of Hunan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Zeng.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 4083 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Wang, S., Chen, Z. et al. A turn-on fluorescent nanoprobe for lead(II) based on the aggregation of weakly associated gold(I)-glutathione nanoparticles. Microchim Acta 184, 4209–4215 (2017). https://doi.org/10.1007/s00604-017-2406-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2406-x

Keywords

Navigation