Log in

Capacitive sensing of microcystin variants of Microcystis aeruginosa using a gold immunoelectrode modified with antibodies, gold nanoparticles and polytyramine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on the application of an automated and easy-to-use device to directly measure the immunoreactions between adda-specific monoclonal antibodies and microcystins. The antibodies were immobilized on a gold electrode whose surface was modified first with polytyramine and then with gold nanoparticles. The immunoreaction leads to a change in the capacitance of the system. Under optimum conditions, the sensor is capable of performing stable regeneration-assay cycles and has a low detection limit at a concentration of 0.01 pM level of microcystin-leucine-arginine (MC-LR). The surface of the biosensor can be regenerated with pH 2.5 glycine buffer which dissociates the antibody-antigen complex. The biosensor was used to monitor the production of microcystins during batch cultivation of Microcystis aeruginosa (isolated from ponds in Botswana). Liquid chromatography coupled to MS/MS detection was used to identify three variants, viz. MC-LR (995.6 Da), DmMC-LR (981.2 Da) and MC-LA (910.5 Da).

A capacitive immunosensor was fabricated by immobilizing monoclonal antibodies on a polytyramine-gold nanoparticle layer. The immunosensor was used to quantify microcystins produced by Microcystis aeruginosa; MC-LR, DmMC-LR and MC-LA, and further identified by LC- MS/MS. The results show that cumulative determination of microcystin variants is possible with this immunosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Antoniou MG, de la Cruz AA, Dionysiou DD (2005) Cyanotoxins: new generation of water contaminants. J Environ Eng 13(9):1239–1243

    Article  Google Scholar 

  2. Namikoshi M, Sivonen K, Evans WR, Sun F, Carmichael WW, Rinehart KL (1992) Isolation and structures of microcystins from a cyanobacterial water bloom (Finland). Toxicon 30(11):1473–1479

    Article  CAS  Google Scholar 

  3. Fischer WJ, Garthwaite I, Miles CO, Ross KM, Aggen JB, Chamberlin AR, Towers NR, Dietrich DR (2001) Congener-independent immunoassay for microcystins and nodularins. Environ Sci Technol 35:4849–4856

    Article  CAS  Google Scholar 

  4. Dietrich DR, Fischer A, Michel C, Hoeger SJ (2008) Toxin mixture in cyanobacterial blooms—a critical comparison of reality with current procedures employed in human health risk assessment. In: Hudnell KH (Ed) Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs. Adv Exp Med Biol 619:885–912

  5. World Health Organization (WHO) (1998) Guidelines for drinking water quality, addendum to vol.1, 2nd edn. World Health Organization, Geneva

  6. Morais S, Tamarit-Lopez J, Puchades R, Maquieira A (2010) Determination of microcystins in river waters using microsensor arrays on disk. Environ Sci Technol 44:9024–9029

    Article  CAS  Google Scholar 

  7. Long F, He M, Zhu AN, Shi HC (2009) Portable optical immunosensor for highly sensitive detection of microcystin-LR in water samples. Biosens Bioelectron 24:2346–2351

    Article  CAS  Google Scholar 

  8. Herranz S, Marazuela MD, Moreno-Bondi MC (2012) Automated portable array biosensor for multisample microcystin analysis in freshwater samples. Biosens Bioelectron 33:50–55

    Article  CAS  Google Scholar 

  9. Zeck A, Weller MG, Bursill D, Niessner R (2001) Generic microcystin immunoassay based on monoclonal antibodies against Adda. Analyst 126(11):2002–2007

    Article  CAS  Google Scholar 

  10. Gambaro A, Barbaro E, Zangrando R, Barbante C (2012) Simultaneous quantification of microcystins and nodularin in aerosol samples using high-performance liquid chromatography/negative electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 26:1497–1506

    Article  CAS  Google Scholar 

  11. Erlandsson D, Teeparuksapun K, Mattiasson B, Hedström M (2014) Automated flow-injection immunosensor based on current pulse capacitive measurements. Sensors Actuators B Chem 190:295–304

    Article  CAS  Google Scholar 

  12. Teeparuksapun K, Hedström M, Wong EY, Tang S, Hewlett IK, Mattiasson B (2010) Ultrasensitive detection of HIV-p24 antigen using nanofunctionalised surfaces in a capacitive immunosensor. Anal Chem 82(20):8406–8411

    Article  CAS  Google Scholar 

  13. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Article  Google Scholar 

  14. Komárek J, Komárkova J (2002) Review of the European Microcystis-morphospecies (Cyanoprokaryotes) from nature. Czech Phycol Olomouc 2:1–24

    Google Scholar 

  15. Phelan RR, Downing TG (2007) Optimization of laboratory scale production and purification of microcystin-LR from pure cultures of Microcystis aeruginosa. Afr J Biotechnol 6(21):2451–2457

    CAS  Google Scholar 

  16. Black K, Yilmaz M, Phlips EJ (2011) Growth and toxin production of Microcystis aeruginosa PCC 7806 (Kutzing) Lemmerman at elevated salt concentrations. J Environ Prot 2:669–674

    Article  CAS  Google Scholar 

  17. Labib M, Hedström M, Amin M, Mattiasson B (2009) A capacitance immunosensor for detection of cholera toxin. Anal Chim Acta 634(2):255–261

    Article  CAS  Google Scholar 

  18. Teeparuksapun K, Kanatharana P, Limbut W, Thammakhet C, Asawatreratanakul P, Mattiasson B, Wongkittisuksa B, Limsakul C, Thavarungkul P (2009) Disposable electrodes for capacitive immunosensor. Electroanalysis 21(9):1066–1074

    Article  CAS  Google Scholar 

  19. Hedström M, Galaev IY, Mattiasson B (2005) Continuous measurements of a binding reaction using a capacitive biosensor. Biosens Bioelectron 21:41–48

    Article  Google Scholar 

  20. Mattiasson B, Teeparuksapun K, Hedström M (2009) Immunochemical binding assays for detection and quantification of trace impurities in biotechnological production. Trends Biotechnol 28(1):20–27

    Article  Google Scholar 

  21. Dietrich DR, Hoeger SJ (2005) Guidance values for microcystins in water and cyanobacterial supplement products (blue–green algal supplements): a reasonable or misguided approach? Toxicol Appl Pharmacol 203:273–289

    Article  CAS  Google Scholar 

  22. **arrón JM, Yáñez-Sedeño P, González-Cortés A (2008) Gold nanoparticle-based electrochemical biosensors. Electrochim Acta 53:5848–5866

    Article  Google Scholar 

  23. Losic D, Martin C, Thissen H, Voelcker NH (2005) Ultrathin polytyramine films by electropolymerisation on highly doped p-type silicon electrodes. Surf Sci 584:245–257

    Article  CAS  Google Scholar 

  24. Queirós RB, Noronha JP, Marques PVS, Fernandes JS, Sales MGF (2012) Determination of microcystin-LR in waters in the subnanomolar range by sol–gel imprinted polymers on solid contact electrodes. Analyst 137(10):2437–2444

    Article  Google Scholar 

  25. Tian J, Zhao H, Zhao H, Quan X (2012) Photoelectrochemical immunoassay for microcystin-LR based on a fluoride-doped tin oxide glass electrode modified with a Cds-graphene composite. Microchim Acta 179:163–170

    Article  CAS  Google Scholar 

  26. Sun X, Guan L, Shi H, Ji J, Zhang Y, Li Z (2013) Determination of microcystin-LR with glassy carbon impedimetric immunoelectrode modified with an ionic liquid and multiwalled carbon nanotubes. Microchim Acta 180:75–83

    Article  CAS  Google Scholar 

  27. Tong P, Tang S, He Y, Shao Y, Zhang L, Chen G (2011) Label-free immunosensing of microcystin-LR using gold electrode modified with gold nanoparticles. Microchim Acta 173:299–305

    Article  CAS  Google Scholar 

  28. Msagati TAM, Siame BA, Shushu DD (2006) Evaluation of methods for the isolation, detection and quantification of cyanobacterial hepatotoxins. Aquat Toxicol 78:382–397

    Article  CAS  Google Scholar 

  29. Hartwell SK, Grudpan K (2010) Flow based immune/bioassays and trends in micro-immuno/biosensors. Microchim Acta 169:201–220

    Article  CAS  Google Scholar 

  30. Lawrence JF, Niedzwiadek B, Menard C, Lau BP, Lewis D, Kuper-Goodman T, Carbone S, Holmes C (2001) Comparison of liquid chromatography/mass spectrometry, ELISA, and phosphatase assay for the determination of microcystins in blue-green algae products. J AOAC Int 84(4):1035–1044

    CAS  Google Scholar 

  31. Wang J, Pang X, Ge F, Ma Z (2007) An ultra-performance liquid chromatography-tandem mass spectrometry method for determination of microcystins occurrence in surface water in Zhejiang Province, China. Toxicon 49:1120–1128

    Article  CAS  Google Scholar 

  32. Silva-Stenico ME, Neto RM, Alves IR, Moraes LAB, Shishido TK, Fiore MF (2009) Hepatotoxin microcystin-LR extraction optimization. J Braz Chem Soc 4:535–542

    Article  Google Scholar 

  33. Allis O, Dauphard J, Hamilton B, Shuilleabhain AN, Lehane M, James KJ, Furey A (2007) Liquid chromatography–Tandem mass spectrometry application, for the determination of extracellular hepatotoxins in Irish lake and drinking waters. Anal Chem 79:3436–3447

    Article  CAS  Google Scholar 

  34. Oehrle SA, Southwell B, Westrick J (2010) Detection of various freshwater cyanobacterial toxins using ultra-performance liquid chromatography tandem mass spectrometry. Toxicon 55:965–972

    Article  CAS  Google Scholar 

  35. Yuan M, Namikoshi M, Otsuki A, Sivonen K (1998) Effect of amino acid side-chain on fragmentation of cyclic peptide ions: differences of electrospray ionization/collision-induced decomposition mass spectra of toxic heptapeptide micorcystin containing ADMAdda instead of Adda. Eur J Mass Spectrom 4:287–298

    Article  CAS  Google Scholar 

  36. Reverté L, Garibo D, Flores C, Diogène J, Caixach J, Campàs M (2013) Magnetic particle-based enzyme assays and immunoassays for microcystins: from colorimetric to electrochemical detection. Environ Sci Technol 47:471–478

    Article  Google Scholar 

  37. Hiller S, Krock B, Cembella A, Luckas B (2007) Rapid detection of cyanobacterial toxins in precursor ion mode by liquid chromatography tandem mass spectrometry. J Mass Spectrom 42:1238–1250

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Botswana International University of Science and Technology is gratefully acknowledged for the financial support. The Research Council of Sweden (VR) also supported a part of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hedström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebogang, L., Mattiasson, B. & Hedström, M. Capacitive sensing of microcystin variants of Microcystis aeruginosa using a gold immunoelectrode modified with antibodies, gold nanoparticles and polytyramine. Microchim Acta 181, 1009–1017 (2014). https://doi.org/10.1007/s00604-014-1199-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1199-4

Keywords

Navigation