Log in

Electrochemical determination of methyl parathion at a Pd/MWCNTs-modified electrode

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Palladium nanoparticles supported on MWCNTs (Pd/MWCNTs) were successfully prepared by a simple ethylene glycol reduction method in an oil bath. An electrochemical sensor based on Pd/MWCNTs nanocomposite-modified glassy carbon electrode was fabricated for the determination of methyl parathion by differential pulse voltammetry measurement. A highly linear response to methyl parathion in the concentration ranging from 0.10 μg mL−1 to 14 μg mL−1 was observed, and a detection limit of 0.05 μg mL−1 was obtained with the calculation based on signal/noise = 3. The present work provides a simple and rapid approach to the detection of methyl parathion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim TH, Kuca K, Jun D, Jung YS (2005) Design and synthesis of new bis-pyridinium oxime reactivators for acetylcholinesterase inhibited by organophosphorous nerve agents. Bioorg Med Chem Lett 15:2914

    Article  CAS  Google Scholar 

  2. Ang EL, Zhao H, Obbard JP (2005) Recent advances in the bioremediation of persistent organic pollutants via biomolecular engineering. Enzyme Microb Tech 37:487

    Article  CAS  Google Scholar 

  3. Videira RA, Madeira MC, Lopes VI, Madeira VM (2001) Changes induced by malathion, methylparathion and parathion on membrane lipid physicochemical properties correlate with their toxicity. Biochim Biophys Acta 1511:360

    Article  CAS  Google Scholar 

  4. Chen PS, Huang SD (2006) Determination of ethoprop, diazinon, disulfoton and fenthion using dynamic hollow fiber-protected liquid-phase microextraction coupled with gas chromatography–mass spectrometry. Talanta 69:669

    Article  CAS  Google Scholar 

  5. Silva GA, Augusto F, Poppi RJ (2007) Simultaneous optimization by neuro-genetic approach of a multiresidue method for determination of pesticides in Passiflora alata infuses using headspace solid phase microextraction and gas chromatography. J Chromatogr A 1138:251

    Article  Google Scholar 

  6. Leandro CC, Hancock P, Fussell RJ, Keely BJ (2006) Comparison of ultra-performance liquid chromatography and high-performance liquid chromatography for the determination of priority pesticides in baby foods by tandem quadrupole mass spectrometry. J Chromatogr A 1103:94

    Article  CAS  Google Scholar 

  7. Cheng X, Wang QJ, Zhang S, Zhang WD, He PG, Fang YZ (2007) Determination of four kinds of carbamate pesticides by capillary zone electrophoresis with amperometric detection at a polyamide-modified carbon paste electrode. Talanta 71:1083

    Article  CAS  Google Scholar 

  8. Sacks V, Eshkenazi I, Neufeld T, Dosoretz C, Rishpon J (2000) Immobilized parathion hydrolase: an amperometric sensor for parathion. Anal Chem 72:2055

    Article  CAS  Google Scholar 

  9. Bachmann TT, Leca B, Vilatte F, Marty JL, Fournier D, Schmid RD (2000) Improved multianalyte detection of organophosphates and carbamates with disposable multielectrode biosensors using recombinant mutants of drosophila acetylcholinesterase and artificial neural networks. Biosens Bioelectron 15:193

    Article  CAS  Google Scholar 

  10. Kok FN, Hasirci V (2004) Determination of binary pesticide mixtures by an acetylcholinesterase–choline oxidase biosensor. Biosens Bioelectron 19:661

    Article  CAS  Google Scholar 

  11. Liu GD, Lin YH (2006) Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Anal Chem 78:835

    Article  CAS  Google Scholar 

  12. Gong JM, Wang LY, Zhang LZ (2009) Electrochemical biosensing of methyl parathion pesticide based on acetylcholinesterase immobilized onto Au–polypyrrole interlaced network-like nanocomposite. Biosens Bioelectron 24:2285

    Article  CAS  Google Scholar 

  13. Lin YH, Lu F, Wang J (2004) Disposable carbon nanotube modified screen-printed biosensor for amperometric detection of organophosphorus pesticides and nerve agents. Electroanalysis 16:145

    Article  CAS  Google Scholar 

  14. Pedrosa VA, Miwa D, Machado SAS, Avaca LA (2006) On the utilization of boron doped diamond electrode as a sensor for parathion and as an anode for electrochemical combustion of parathion. Electroanalysis 18:1590

    Article  CAS  Google Scholar 

  15. Manisankar P, Selvanathan G, Vedhi C (2006) Determination of pesticides using heteropolyacid montmorillonite clay-modified electrode with surfactant. Talanta 68:686

    Article  CAS  Google Scholar 

  16. Wang J, Pumera M, Collins G, Mulchandani A, Lin Y, Olsen K (2002) Single-channel microchip for fast screening and detailed identification of nitroaromatic explosives or organophosphate nerve agents. Anal Chem 74:1187

    Article  CAS  Google Scholar 

  17. Qu YH, Min H, Wei Y, **ao F, Shi GY, Li XH, ** LT (2008) Au–TiO2/Chit modified sensor for electrochemical detection of trace organophosphates insecticides. Talanta 76:758

    Article  CAS  Google Scholar 

  18. Liu GD, Lin YH (2005) Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as aelective sorbents. Anal Chem 77:5894

    Article  CAS  Google Scholar 

  19. Wang M, Li ZY (2008) Nano-composite ZrO2/Au film electrode for voltammetric detection of parathion. Sens Actuat B 133:607

    Article  Google Scholar 

  20. Zhao Q, Guan LH, Gu ZN, Zhuang QK (2005) Determination of phenolic compounds based on the tyrosinase-single walled carbon nanotubes sensor. Electroanalysis 17:85

    Article  CAS  Google Scholar 

  21. Sotriropoulou S, Gavalas V, Vamvakaki V, Chaniotakis NA (2003) Novel carbon materials in biosensor systems. Biosens Bioelectron 18:211

    Article  Google Scholar 

  22. Liu Y, Wu S, Ju HX, Xu L (2007) Amperometric glucose biosensing of gold nanoparticles and carbon nanotube multilayer membranes. Electroanalysis 19:986

    Article  CAS  Google Scholar 

  23. Li LH, Zhang WD (2008) Preparation of carbon nanotubes supported platinum nanoparticles by organic colloidal process for nonenzymatic glucose sensing. Microchim Acta 163:305

    Article  CAS  Google Scholar 

  24. Ye JS, Wen Y, Zhang WD, Gan LM, Xu GQ, Sheu FS (2004) Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes. Electrochem Commun 6:66

    Article  CAS  Google Scholar 

  25. Zhang MN, Gong KP, Zhang HW, Mao LQ (2005) Layer-by-layer assembled carbon nanotubes for selective determination of dopamine in the presence of ascorbic acid. Biosens Bioelectron 20:1270

    Article  CAS  Google Scholar 

  26. Bai YC, Zhang WD (2010) Highly sensitive and selective determination of dopamine in the presence of ascorbic acid using Pt@Au/MWNTs modified electrode. Electroanalysis 22:237

    Article  CAS  Google Scholar 

  27. Poh WC, Loh KP, Zhang WD, Triparthy S, Ye JS, Sheu FS (2004) Biosensing properties of diamond and carbon nanotubes. Langmuir 20:5484

    Article  CAS  Google Scholar 

  28. Lim SH, Wei J, Lin JY (2004) Electrochemical genosensing properties of gold nanoparticle–carbon nanotube hybrid. Chem Phys Lett 400:578

    Article  CAS  Google Scholar 

  29. Zhao YD, Zhang WD, Chen H, Luo QM (2004) Anodic oxidation of hydrazine at carbon nanotube powder microelectrode and its detection. Talanta 58:529

    Article  Google Scholar 

  30. Ellis AV, Vjayamohanan K, Goswaimi R, Chakrapani N, Ramanathan LS, Ajayan PM, Ramanath G (2003) Hydrophobic anchoring of monolayer-protected gold nanoclusters to carbon nanotubes. Nano Lett 3:279

    Article  CAS  Google Scholar 

  31. Liu GD, Lin YH (2005) Electrochemical strip** analysis of organophosphate pesticides and nerve agents. Electrochem Commun 7:339

    Article  CAS  Google Scholar 

  32. Sbai M, Essis-Tome H, Gombert U, Breton T, Pontié M (2007) Electrochemical strip** analysis of methyl-parathion (MPT) using carbon fiber microelectrodes (CFME) modified withcombinations of poly-NiTSPc and Nafion® films. Sens Actuat B Chem 124:368

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Ministry of Science and Technology of China (2008AA06Z311) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-De Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, B., Zhang, WD., Chen, CH. et al. Electrochemical determination of methyl parathion at a Pd/MWCNTs-modified electrode. Microchim Acta 171, 57–62 (2010). https://doi.org/10.1007/s00604-010-0408-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0408-z

Keywords

Navigation