Log in

Numerical Modelling of the Anisotropic Mechanical Behaviour of Opalinus Clay at the Laboratory-Scale Using FEM/DEM

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The Opalinus Clay (OPA) is an argillaceous rock formation selected to host a deep geologic repository for high-level nuclear waste in Switzerland. It has been shown that the excavation damaged zone (EDZ) in this formation is heavily affected by the anisotropic mechanical response of the material related to the presence of bedding planes. In this context, the purpose of this study is twofold: (i) to illustrate the new developments that have been introduced into the combined finite-discrete element method (FEM/DEM) to model layered materials and (ii) to demonstrate the effectiveness of this new modelling approach in simulating the short-term mechanical response of OPA at the laboratory-scale. A transversely isotropic elastic constitutive law is implemented to account for the anisotropic elastic modulus, while a procedure to incorporate a distribution of preferentially oriented defects is devised to capture the anisotropic strength. Laboratory results of indirect tensile tests and uniaxial compression tests are used to calibrate the numerical model. Emergent strength and deformation properties, together with the simulated damage mechanisms, are shown to be in strong agreement with experimental observations. Subsequently, the calibrated model is validated by investigating the effect of confinement and the influence of the loading angle with respect to the specimen anisotropy. Simulated fracture patterns are discussed in the context of the theory of brittle rock failure and analyzed with reference to the EDZ formation mechanisms observed at the Mont Terri Underground Research Laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Adhikary DP, Dyskin AV (1998) A continuum model of layered rock masses with non-associative joint plasticity. Int J Numer Anal Met 22(4):245–261

    Article  Google Scholar 

  • Amann F, Button EA, Evans KF, Gischig VS, Blümel M (2011) Experimental study of the brittle behaviour of clay shale in rapid unconfined compression. Rock Mech Rock Eng 44(4):415–430

    Article  Google Scholar 

  • Amann F, Kaiser PK, Button EA (2012) Experimental study of brittle behaviour of clay shale in rapid triaxial compression. Rock Mech Rock Eng 45(1):21–33

    Article  Google Scholar 

  • Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7 (C):55–129

    Article  Google Scholar 

  • Besuelle P, Chambon R, Collin F (2006) Switching deformation modes in post-localization solutions with a quasi-brittle material. J Mech Mater Struct 1(7):1115–1134

    Article  Google Scholar 

  • Bieniawski ZT (1967) Mechanism of brittle fracture of rock. Part I: theory of the fracture process. Int J Rock Mech Min Sci 4(4):395–406

    Article  Google Scholar 

  • Bieniawski ZT, Hawkes I (1978) Suggested methods for determining tensile strength of rock materials. Int J Rock Mech Min Sci 15:99–103

    Article  Google Scholar 

  • Blümling P, Bernier F, Lebon P, Martin CD (2007) The excavation damaged zone in clay formations time-dependent behaviour and influence on performance assessment. Phys Chem Earth 32(8–14):588–599

    Article  Google Scholar 

  • Bobet A, Einstein HH (1998a) Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci 35(7):863–888

    Article  Google Scholar 

  • Bobet A, Einstein HH (1998b) Numerical modeling of fracture coalescence in a model rock material. Int J Fracture 92(3):221–252

    Article  Google Scholar 

  • Bock H (2001) RA experiment. Rock mechanics analysis and synthesis: conceptual model of the Opalinus Clay. Mont Terri Technical Note 2001–02

  • Bock H (2009) RA Experiment. Updated review of the rock mechanics properties of the Opalinus Clay of the Mont Terri URL based on laboratory and field testing. Mont Terri Technical Report 2008–04

  • Bossart P, Meier PM, Moeri A, Trick T, Mayor J-C (2002) Geological and hydraulic characterisation of the excavation disturbed zone in the Opalinus Clay of the Mont Terri Rock Laboratory. Eng Geol 66(1–2):19–38

    Article  Google Scholar 

  • Brace WF, Bombolakis EG (1963) A note on brittle crack growth in compression. J Geophys Res 68(12):3709–3713

    Article  Google Scholar 

  • Brace WF, Paulding BW Jr, Scholz C (1966) Dilatancy in the fracture of crystalline rocks. Geophys Res Lett 71(16):3939–3953

    Google Scholar 

  • Collin F, Chambon R, Charlier R (2006) A finite element method for poro-mechanical modelling of geotechnical problems using local second gradient models. Int J Numer Meth Eng 65(11):1749–1772

    Article  Google Scholar 

  • Corkum AG, Martin CD (2007) The mechanical behaviour of weak mudstone (Opalinus Clay) at low stresses. Int J Rock Mech Min Sci 44(2):196–209

    Article  Google Scholar 

  • Dedecker F, Cundall P, Billaux D, Groeger T (2007) Evaluation of damage-induced permeability using a three-dimensional adaptive continuum/discontinuum code (AC/DC). Phys Chem Earth 32(8–14):681–690

    Google Scholar 

  • Diederichs MS (2000) Instability of hard rockmasses: the role of tensile damage and relaxation. PhD Thesis, University of Waterloo, Waterloo, Canada

  • Diederichs MS (2003) Manuel rocha medal recipient rock fracture and collapse under low confinement conditions. Rock Mech Rock Eng 36(5):339–381

    Article  Google Scholar 

  • Donath FA (1972) Effects of cohesion and granularity on deformational behavior of anisotropic rock. In: Doc BR, Smith DK (eds) Studies in Mineralogy and Precambrian Geology, vol 135. Geological Society of America, USA, pp 95–128

    Chapter  Google Scholar 

  • Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–104

    Article  Google Scholar 

  • Duveau G, Shao JF, Henry JP (1998) Assessment of some failure criteria for strongly anisotropic geomaterials. Mech Cohes-Frict Mat 3(1):1–26

    Article  Google Scholar 

  • Evans R, Marathe M (1968) Microcracking and stress-strain curves for concrete in tension. Mater Struct 1(1):61–64

    Google Scholar 

  • Hillerborg A, Modeer M, Petersson P-E (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement Concrete Res 6(6):773–781

    Article  Google Scholar 

  • Hoek E, Brown ET (1980) Strength of jointed rock masses. Geotechnique 33(3):187–223

    Article  Google Scholar 

  • Horii H, Nemat-Nasser S (1986) Brittle failure in compression: splitting, faulting, and brittle-ductile transition. Philos T R Soc Lond 319:337–374

    Article  Google Scholar 

  • Itasca Consulting Group Inc (2012) FLAC. Fast Lagrangian Analysis of Continua, Version 7.0. Minneapolis, USA

  • Jaeger JC, Cook NGW (1976) Fundamentals of rock mechanics. Chapman & Hall, London

    Google Scholar 

  • Jahns (2010) RA Experiment. Opalinus Clay rock characterization. Mont Terri Technical Note 2008–55rev

  • Jia P, Tang CA (2008) Numerical study on failure mechanism of tunnel in jointed rock mass. Tunn Undergr Sp Tech 23(5):500–507

    Article  Google Scholar 

  • Kaiser PK, Kim BH (2008) Rock mechanics advances of underground constructions and mining. In: Proceedings of the Korean rock mechanics symposium. Seoul, Korea, pp 1–6

  • Kemeny J, Cook NGW (1986) Effective moduli, non-linear deformation and strength of a cracked elastic solid. Int J Rock Mech Min Sci 23(2):107–118

    Article  Google Scholar 

  • Klinkenberg M, Kaufhold S, Dohrmann R, Siegesmund S (2009) Influence of carbonate microfabrics on the failure strength of claystones. Eng Geol 107(1–2):42–54

    Article  Google Scholar 

  • Konietzky H, Blümling P, teKamp L (2003) Opalinuston—Felsmechanische Untersuchungen. Interner Bericht 03-08, NAGRA, Wettingen, Switzerland

  • Labiouse V (2012) Hollow cylinder simulation experiments on Boom, Opalinus, Callovo-Oxfordian Clays. International Post-TIMODAZ Workshop, St-Ursanne, Switzerland, 6–7 February 2012

  • Labuz JF, Shah SP, Dowding CH (1985) Experimental analysis of crack propagation in granite. Int J Rock Mech Min Sci 22(2):85–98

    Article  Google Scholar 

  • Lan H, Martin CD, Hu B (2010) Effect of heterogeneity of brittle rock on micro-mechanical extensile behaviour during compression loading. J Geophys Res 115:1–14

    Google Scholar 

  • Mahabadi OK (2012) Investigating the influence of micro-scale heterogeneity and microstructure on the failure and mechanical behaviour of geomaterials. PhD thesis, University of Toronto, Toronto, Canada

  • Mahabadi OK, Grasselli G, Munjiza A (2010) Y-GUI: A graphical user interface and pre-processor for the combined finite-discrete element code, Y2D, incorporating material inhomogeneity. Comput Geosci 36(2):241–252

    Article  Google Scholar 

  • Mahabadi OK, Lisjak A, Grasselli G, Munjiza A (2012a) Y-Geo: a new combined finite-discrete element numerical code for geomechanical applications. Int J Geomech. doi:10.1061/(ASCE)GM.1943-5622.0000216

  • Mahabadi OK, Randall NX, Zong Z, Grasselli G (2012b) A novel approach for micro-mechanical characterization and modelling of geomaterials incorporating actual material heterogeneity. Geophys Res Lett 39:L01303

    Article  Google Scholar 

  • Martin CD (1997) Seventeenth Canadian geotechnical colloquium: the effect of cohesion loss and stress path on brittle rock strength. Can Geotech J 34:239–254

    Google Scholar 

  • McLamore R, Gray KE (1967) The mechanical behavior of anisotropic sedimentary rocks. J Eng Ind-T Asme 89:62–73

    Article  Google Scholar 

  • Munjiza A (2004) The combined finite-discrete element method. Wiley, Chichester

    Book  Google Scholar 

  • Munjiza A, Andrews KRF (2000) Discretised penalty function method in combined finite-discrete element analysis. Int J Num Meth Eng 49(11):1495–1520

    Article  Google Scholar 

  • Munjiza A, John NWM (2002) Mesh size sensitivity of the combined FEM/DEM fracture and fragmentation algorithms. Eng Fract Mech 69(2):281–295

    Article  Google Scholar 

  • Munjiza A, Owen DRJ, Bicanic N (1995) A combined finite-discrete element method in transient dynamics of fracturing solids. Eng Computation 12(2):145–174

    Article  Google Scholar 

  • Munjiza A, Andrews KRF, White JK (1999) Combined single and smeared crack model in combined finite-discrete element analysis. Int J Num Meth Eng 44(1):41–57

    Article  Google Scholar 

  • Naumann M, Hunsche U, Schulze O (2007) Experimental investigations on anisotropy in dilatancy, failure and creep of Opalinus Clay. Phys Chem Earth 32(8–14):889–895

    Article  Google Scholar 

  • Niandou H, Shao JF, Henry JP, Fourmaintraux D (1997) Laboratory investigation of the mechanical behavior of Tournemire shale. Int J Rock Mech Min Sci 34(1):3–16

    Article  Google Scholar 

  • Paterson MS, Wong T (2004) Experimental Rock Deformation—The Brittle Field. Springer, NewYork

    Google Scholar 

  • Popp T, Salzer K (2007a) Anisotropy of seismic and mechanical properties of Opalinus Clay during triaxial deformation in a multi-anvil apparatus. Phys Chem Earth 32(8–14):879–888

    Article  Google Scholar 

  • Popp T, Salzer K (2007b) Laboratory tests on bedding planes. Mont Terri Technical Report 2007–04

  • Popp T, Salzer K, Minkley W (2008) Influence of bedding planes to EDZ-evolution and the coupled HM properties of Opalinus Clay. Phys Chem Earth 33:S374–S387

    Article  Google Scholar 

  • Potyondy D, Cundall P (2000) Bonded-particle simulations of the in situ failure test at Olkiluoto. International Progress Report 01–13, SKB, Stockholm, Sweden

  • Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364

    Article  Google Scholar 

  • Riahi A, Curran JH (2009) Full 3D finite element Cosserat formulation with application in layered structures. Appl Math Model 33(8):3450–3464

    Article  Google Scholar 

  • Salager S, Nuth M, Laloui L (2010) Anisotropic features of the mechanical behaviour of Opalinus Clay. In: Zhao J, Labiouse V, Dudt J-P, Mathier J-F (eds) Proceedings of the European Rock Mechanics Symposium, Lausanne, Switzerland. Taylor & Francis Group, London

  • Seeska R, Lux K-H (2012) Borehole deformation measurements and video-observations of boreholes in the Opalinus Clay of the Mont Terri URL. International Post-TIMODAZ Workshop, St-Ursanne, Switzerland, 6–7 February 2012

  • Tang CA, Kaiser PK (1998) Numerical simulation of cumulative damage and seismic energy release during brittle rock failure - Part I: fundamentals. Int J Rock Mech Min Sci 35(2):113–121

    Article  Google Scholar 

  • Tang CA, Kou SQ (1998) Crack propagation and coalescence in brittle materials under compression. Eng Fract Mech 61(3–4):311–324

    Article  Google Scholar 

  • Tang CA, Lin P, Wong RHC, Chau KT (2001) Analysis of crack coalescence in rock-like materials containing three flaws—Part II: numerical approach. Int J Rock Mech Min Sci 38(7):925–939

    Article  Google Scholar 

  • Tapponnier P, Brace WF (1976) Development of stress-induced microcracks in Westerly Granite. Int J Rock Mech Min Sci 13(4):103–112

    Article  Google Scholar 

  • Tijssens MGA, Sluys BLG, van der Giessen E (2000) Numerical simulation of quasi-brittle fracture using damaging cohesive surfaces. Eur J Mech A-Solid 19(5):761–779

    Article  Google Scholar 

  • Ting TCT (1996) Anisotropic elasticity: theory and applications. Oxford University Press

  • Tsang C-F, Bernier F, Davies C (2005) Geohydromechanical processes in the excavation damaged zone in crystalline rock, rock salt, and indurated and plastic clays—in the context of radioactive waste disposal. Int J Rock Mech Min Sci 42(1):109–125

    Article  Google Scholar 

  • Turon A, Dávila CG, Camanho PP, Costa J (2007) An engineering solution to mesh size effects in the simulation of delamination using cohesive zone models. Eng Fract Mech 74(10):1665–1682

    Article  Google Scholar 

  • Vesga LF, Vallejo LE, Lobo-Guerrero S (2008) DEM analysis of the crack propagation in brittle clays under uniaxial compression tests. Int J Num Anal Meth 32(11):1405–1415

    Article  Google Scholar 

  • Vietor T, Li X, Fierz T (2012) In situ experiments in TIMODAZ. International Post-TIMODAZ Workshop, St-Ursanne, Switzerland, 6–7 February 2012

  • Wanne T (2002) Rock strength and deformation dependence on schistosity. Simulation of rock with PFC3D. Report 2002–05, Posiva Oy, Helsinki, Finland

  • Yan M (2008) Numerical modelling of brittle fracture and step-path failure: from laboratory to rock slope scale. PhD Thesis, Simon Fraser University, Burnaby, Canada

  • You S, Zhao G, Ji H (2011) Model for transversely isotropic materials based on distinct lattice spring model (DLSM). J Computer 6:1139–1144

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the Natural Science and Engineering Research Council of Canada in the form of Discovery Grant No. 341275 and by NAGRA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Lisjak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisjak, A., Tatone, B.S.A., Grasselli, G. et al. Numerical Modelling of the Anisotropic Mechanical Behaviour of Opalinus Clay at the Laboratory-Scale Using FEM/DEM. Rock Mech Rock Eng 47, 187–206 (2014). https://doi.org/10.1007/s00603-012-0354-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-012-0354-7

Keywords

Navigation