Log in

Radiomics-based prediction of nonalcoholic fatty liver disease following pancreatoduodenectomy

  • Original Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Purpose

Predicting nonalcoholic fatty liver disease (NAFLD) following pancreaticoduodenectomy (PD) is challenging, which delays therapeutic intervention and makes its prevention difficult. We conducted this study to assess the potential application of preoperative computed tomography (CT) radiomics for predicting NAFLD.

Methods

The subjects of this retrospective study were 186 patients with PD from a single institution. We extracted the predictors of NAFLD after PD statistically from conventional clinical and radiomic features of the estimated remnant pancreas and whole liver region on preoperative nonenhanced CT images. Based on these predictors, we developed a machine-learning predictive model, which integrated clinical and radiomic features. A comparative model used only clinical features as predictors.

Results

The incidence of NAFLD after PD was 43.5%. The variables of the clinicoradiomic model included one shape feature of the pancreas, two texture features of the liver, and sex; the variables of the clinical model were age, sex, and chemoradiotherapy. The accuracy%, precision%, recall%, F1 score, and area under the curve of the two models were 75.0, 72.7, 66.7, 69.6, and 0.80; and 69.6, 68.4, 54.2, 60.5, and 0.69, respectively.

Conclusions

Preoperative CT-derived radiomic features from the pancreatic and liver regions are promising for the prediction of NAFLD post-PD. Using these features enhances the predictive model, enabling earlier intervention for high-risk patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kato H, Isaji S, Azumi Y, Kishiwada M, Hamada T, Mizuno S, et al. Development of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) after pancreaticoduodenectomy: proposal of a postoperative NAFLD scoring system. J Hepato-Bil Pancreat Sci. 2010;17:296–304. https://doi.org/10.1007/s00534-009-0187-2.

    Article  Google Scholar 

  2. Sato R, Kishiwada M, Kuriyama N, Azumi Y, Mizuno S, Usui M, et al. Paradoxical impact of the remnant pancreatic volume and infectious complications on the development of nonalcoholic fatty liver disease after pancreaticoduodenectomy. J Hepato-Bil Pancreat Sci. 2014;21:562–72. https://doi.org/10.1002/jhbp.115.

    Article  Google Scholar 

  3. Miura H, Ijichi M, Ando Y, Hayama K, IIhara K, Yamada H, et al. A rapidly progressive and fatal case of nonalcoholic steatohepatitis following pancreaticoduodenectomy. Clin J Gastroenterol. 2013;6:470–5. https://doi.org/10.1007/s12328-013-0421-y.

    Article  PubMed  Google Scholar 

  4. Murata Y, Mizuno S, Kato H, Kishiwada M, Ohsawa I, Hamada T, et al. Nonalcoholic steatohepatitis (NASH) after pancreaticoduodenectomy: association of pancreatic exocrine deficiency and infection. Clin J Gastroenterol. 2011;4:242–8. https://doi.org/10.1007/s12328-011-0226-9.

    Article  PubMed  Google Scholar 

  5. Nakagawa N, Murakami Y, Uemura K, Sudo T, Hashimoto Y, Kondo N, et al. Nonalcoholic fatty liver disease after pancreatoduodenectomy is closely associated with postoperative pancreatic exocrine insufficiency. J Surg Oncol. 2014;110:720–6. https://doi.org/10.1002/jso.23693.

    Article  CAS  PubMed  Google Scholar 

  6. Matsumoto J, Traverso LW. Exocrine function following the Whipple operation as assessed by stool elastase. J Gastrointest Surg. 2006;10:1225–9. https://doi.org/10.1016/j.gassur.2006.08.001.

    Article  PubMed  Google Scholar 

  7. Satoi S, Sho M, Yanagimoto H, Yamamoto T, Akahori T, Kinoshita S, et al. Do pancrelipase delayed-release capsules have a protective role against nonalcoholic fatty liver disease after pancreatoduodenectomy in patients with pancreatic cancer? A randomized controlled trial. J Hepatobiliary Pancreat Sci. 2016;23:167–73. https://doi.org/10.1002/jhbp.318.

    Article  PubMed  Google Scholar 

  8. Yasukawa K, Shimizu A, Yokoyama T, Kubota K, Notake T, Seki H, et al. Preventive effect of high-dose digestive enzyme management on development of nonalcoholic fatty liver disease after pancreaticoduodenectomy: a randomized controlled clinical trial. J Am Coll Surg. 2020;231:658–69. https://doi.org/10.1016/j.jamcollsurg.2020.08.761.

    Article  PubMed  Google Scholar 

  9. Hoshino I, Yokota H. Radiogenomics of gastroenterological cancer: the dawn of personalized medicine with artificial intelligence-based image analysis. Ann Gastroenterol Surg. 2021;5:427–35. https://doi.org/10.1002/ags3.12437.

    Article  PubMed  PubMed Central  Google Scholar 

  10. van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B. Radiomics in medical imaging “how-to” guide and critical reflection. Insights Imaging. 2020;11:91. https://doi.org/10.1186/s13244-020-00887-2.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mayerhoefer ME, Materka A, Langs G, Häggström I, Szczypiński P, Gibbs P, et al. Introduction to radiomics. J Nucl Med. 2020;61:488–95. https://doi.org/10.2967/jnumed.118.222893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu L, Lou X, Kong N, Xu M, Gao C. Can quantitative peritumoral CT radiomics features predict the prognosis of patients with non-small cell lung cancer? Syst Rev Eur Radiol. 2023;33:2105–17. https://doi.org/10.1007/s00330-022-09174-8.

    Article  Google Scholar 

  13. Mukherjee S, Patra A, Khasawneh H, Korfiatis P, Rajamohan N, Suman G, et al. Radiomics-based machine learning models can detect pancreatic cancer on prediagnostic CTs at a substantial lead time prior to clinical diagnosis. Gastroenterology. 2022;163:1435-1446.e3. https://doi.org/10.1053/j.gastro.2022.06.066.

    Article  PubMed  Google Scholar 

  14. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, et al. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017;77:e104–7. https://doi.org/10.1158/0008-5472.CAN-17-0339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12:2825–30.

    Google Scholar 

  16. McGhee-Jez AE, Chervoneva I, Yi M, Ahuja A, Nahar R, Shah S, et al. Nonalcoholic fatty liver disease after pancreaticoduodenectomy for a cancer diagnosis. J Pancreat Cancer. 2021;7:23–30. https://doi.org/10.1089/pancan.2020.0006.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tanaka N, Horiuchi A, Yokoyama T, Kaneko G, Horigome N, Yamaura T, et al. Clinical characteristics of de novo nonalcoholic fatty liver disease following pancreaticoduodenectomy. J Gastroenterol. 2011;46:758–68. https://doi.org/10.1007/s00535-011-0370-5.

    Article  CAS  PubMed  Google Scholar 

  18. Takemura N, Saiura A, Koga R, Yamamoto J, Yamaguchi T. Risk factors for and management of postpancreatectomy hepatic steatosis. Scand J Surg. 2017;106:224–9. https://doi.org/10.1177/1457496916669630.

    Article  CAS  PubMed  Google Scholar 

  19. Maehira H, Iida H, Maekawa T, Yasukawa D, Mori H, Takebayashi K, et al. Estimated functional remnant pancreatic volume predicts nonalcoholic fatty liver disease after pancreaticoduodenectomy: use of computed tomography attenuation value of the pancreas. HPB (Oxford). 2021;23:802–11. https://doi.org/10.1016/j.hpb.2020.09.019.

    Article  PubMed  Google Scholar 

  20. Ohgi K, Okamura Y, Yamamoto Y, Ashida R, Ito T, Sugiura T, et al. Perioperative computed tomography assessments of the pancreas predict nonalcoholic fatty liver disease after pancreaticoduodenectomy. Medicine. 2016;95: e2535. https://doi.org/10.1097/MD.0000000000002535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kato H, Kamei K, Suto H, Misawa T, Unno M, Nitta H, et al. Incidence and risk factors of nonalcoholic fatty liver disease after total pancreatectomy: a first multicenter prospective study in Japan. J Hepato-Bil Pancreat Sci. 2022;29:428–38. https://doi.org/10.1002/jhbp.1093.

    Article  Google Scholar 

  22. Jeon D, Park BH, Lee HC, Park Y, Lee W, Lee JH, et al. The impact of pylorus preservation on the development of nonalcoholic fatty liver disease after pancreaticoduodenectomy: a historical cohort study. J Hepato-Bil Pancreat Sci. 2022;29:863–73. https://doi.org/10.1002/jhbp.1150.

    Article  Google Scholar 

  23. Luu C, Thapa R, Rose T, Woo K, Jeong D, Thomas K, et al. Identification of nonalcoholic fatty liver disease following pancreatectomy for noninvasive intraductal papillary mucinous neoplasm. Int J Surg. 2018;58:46–9. https://doi.org/10.1016/j.ijsu.2018.09.002.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Robin X, Turck N, Hainard A, et al. Proc an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:1–8.

    Article  Google Scholar 

  25. Traverso A, Wee L, Dekker A, Gillies R. Repeatability and reproducibility of radiomic features: a systematic review. Int J Radiat Oncol Biol Phys. 2018;102:1143–58. https://doi.org/10.1016/j.ijrobp.2018.05.053.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kim YJ, Lee HJ, Kim KG, Lee SH. The effect of CT scan parameters on the measurement of CT radiomic features: a lung nodule phantom study. Comput Math Methods Med. 2019;2019:8790694. https://doi.org/10.1155/2019/8790694.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441–6. https://doi.org/10.1016/j.ejca.2011.11.036.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Hiroyuki Kawaguchi, B.S. in Radiological Technologist, and the other staff members of FUJIFILM Medical Co., Ltd. for their invaluable assistance and guidance in using the image analysis software, SYNAPSE VINCENT. Their expertise and dedicated support greatly enhanced the quality and accuracy of our research results, and we are grateful for their contributions.

Funding

This study did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Takehiro Fujii was responsible for the study design and manuscript writing. Yusuke Iizawa collected the clinical data. The radiomics analysis of the images was performed by Takehiro Fujii and Takumi Kobayashi. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Takehiro Fujii.

Ethics declarations

Conflict of interest

We have no conflicts of interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4269 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujii, T., Iizawa, Y., Kobayashi, T. et al. Radiomics-based prediction of nonalcoholic fatty liver disease following pancreatoduodenectomy. Surg Today (2024). https://doi.org/10.1007/s00595-024-02822-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00595-024-02822-0

Keywords

Navigation