Log in

Serum glial fibrillary acidic protein and neurofilament light chain as biomarkers of retinal neurodysfunction in early diabetic retinopathy: results of the EUROCONDOR study

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

Neurodegeneration and glial activation are primary events in the pathogenesis of diabetic retinopathy. Serum glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) are biomarkers of underlying neuroinflammatory and neurodegenerative disease processes. The aim of the present study was to assess the usefulness of these serum biomarkers for the identification and monitoring of retinal neurodysfunction in subjects with type 2 diabetes.

Methods

A case–control study was designed including 38 patients from the placebo arm of the EUROCONDOR clinical trial: 19 with and 19 without retinal neurodysfunction assessed by multifocal electroretinography. GFAP and NfL were measured by Simoa.

Results

Serum levels of GFAP and NfL directly correlated with age (r = 0.37, p = 0.023 and r = 0.54, p < 0.001, respectively). In addition, a direct correlation between GFAP and NfL was observed (r = 0.495, p = 0.002). Serum levels of GFAP were significantly higher at baseline in those subjects in whom neurodysfunction progressed after the 2 years of follow-up (139.1 ± 52.5 pg/mL vs. 100.2 ± 54.6 pg/mL; p = 0.04).

Conclusions

GFAP could be a useful serum biomarker for retinal neurodysfunction. Monitoring retinal neurodysfunction using blood samples would be of benefit in clinical decision-making. However, further research is needed to validate this result as well as to establish the best cutoff values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability statement

The data presented in this study are available upon request from the corresponding author.

References

  1. Abcouwer SF, Gardner TW (2014) Diabetic retinopathy: loss of neuroretinal adaptation to the diabetic metabolic environment. Ann N Y Acad Sci 1311:174–190. https://doi.org/10.1111/nyas.12412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Simó R, Hernández C (2014) Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metab 25:23–33. https://doi.org/10.1016/j.tem.2013.09.005

    Article  CAS  PubMed  Google Scholar 

  3. Simó R, Hernández C (2015) Novel approaches for treating diabetic retinopathy based on recent pathogenic evidence. Prog Retin Eye Res 48:160–180. https://doi.org/10.1016/j.preteyeres.2015.04.003

    Article  PubMed  Google Scholar 

  4. Stitt AW, Curtis TM, Chen M et al (2016) The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res 51:156–186. https://doi.org/10.1016/j.preteyeres.2015.08.001

    Article  PubMed  Google Scholar 

  5. Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW (1998) Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Investig 102:783–791. https://doi.org/10.1172/JCI2425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carrasco E, Hernández C, Miralles A, Huguet P, Farrés J, Simó R (2007) Lower somatostatin expression is an early event in diabetic retinopathy and is associated with retinal neurodegeneration. Diabetes Care 30:2902–2908. https://doi.org/10.2337/dc07-0332

    Article  CAS  PubMed  Google Scholar 

  7. Garcia-Ramírez M, Hernández C, Villarroel M et al (2009) Interphotoreceptor retinoid-binding protein (IRBP) is downregulated at early stages of diabetic retinopathy. Diabetologia 52:2633–2641. https://doi.org/10.1007/s00125-009-1548-8

    Article  CAS  PubMed  Google Scholar 

  8. Metea MR, Newmman EA (2007) Signalling within the neurovascular unit in the retina. Exp Physiol 92:635–640. https://doi.org/10.1113/expphysiol.2006.036376

    Article  PubMed  PubMed Central  Google Scholar 

  9. Newman EA (2013) Functional hyperemia and mechanisms of neurovascular coupling in the retinal vasculature. J Cereb Blood Flow Metab 33:1685–1695. https://doi.org/10.1038/jcbfm.2013.145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jackson GR, Barber AJ (2010) Visual dysfunction associated with diabetic retinopathy. Curr Diabetes Rep 10:380–384. https://doi.org/10.1007/s11892-010-0132-4

    Article  Google Scholar 

  11. Wolff BE, Bearse MA, Schneck ME et al (2015) Color vision and neuroretinal function in diabetes. Doc Ophthalmol 130:131–139. https://doi.org/10.1007/s10633-014-9476-4

    Article  CAS  PubMed  Google Scholar 

  12. Trento M, Durando O, Lavecchia S et al (2017) Vision related quality of life in patients with type 2 diabetes in the EUROCONDOR trial. Endocrine 57:83–88. https://doi.org/10.1007/s12020-016-1097-0

    Article  CAS  PubMed  Google Scholar 

  13. Sun JK, Aiello LP, Abràmoff MD et al (2021) Updating the staging system for diabetic retinal disease. Ophthalmology 128:490–493. https://doi.org/10.1016/j.ophtha.2020.10.008

    Article  PubMed  Google Scholar 

  14. Scott IU, Jackson GR, Quillen DA et al (2014) Effect of doxycycline vs placebo on retinal function and diabetic retinopathy progression in patients with severe nonproliferative or non-high-risk proliferative diabetic retinopathy: a randomized clinical trial. JAMA Ophthalmol 132:535–543. https://doi.org/10.1001/jamaophthalmol.2014.93

    Article  CAS  PubMed  Google Scholar 

  15. Parisi V, Ziccardi L, Barbano L, Giorno P, Varano M, Parravano MC (2021) Citicoline and vitamin B12 eye drops in type 1 diabetes: results of a 36-month pilot study evaluating macular electrophysiological changes. Adv Ther 38:3924–3936. https://doi.org/10.1007/s12325-021-01771-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Simó R, Hernández C, Porta M et al (2019) Effects of topically administered neuroprotective drugs in early stages of diabetic retinopathy: results of the EUROCONDOR clinical trial. Diabetes 68:457–463. https://doi.org/10.2337/db18-0682

    Article  CAS  PubMed  Google Scholar 

  17. Laverse E, Guo T, Zimmerman K et al (2020) Plasma glial fibrillary acidic protein and neurofilament light chain, but not tau, are biomarkers of sports-related mild traumatic brain injury. Brain Commun 2:fcaa137. https://doi.org/10.1093/braincomms/fcaa137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ayrignac X, Le Bars E, Duflos C et al (2020) Serum GFAP in multiple sclerosis: correlation with disease type and MRI markers of disease severity. Sci Rep 10:10923. https://doi.org/10.1038/s41598-020-67934-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schindler P, Grittner U, Oechtering J et al (2021) Serum GFAP and NfL as disease severity and prognostic biomarkers in patients with aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder. J Neuroinflammation 18:105. https://doi.org/10.1186/s12974-021-02138-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Santos AR, Ribeiro L, Bandello F et al (2017) Functional and structural findings of neurodegeneration in early stages of diabetic retinopathy: cross-sectional analyses of baseline data of the EUROCONDOR project. Diabetes 66:2503–2510. https://doi.org/10.2337/db16-1453

    Article  CAS  PubMed  Google Scholar 

  21. Marmor MF, Fulton AB, Holder GE et al (2009) ISCEV standard for fullfield clinical electroretinography (2008 update). Doc Ophthalmol 118:69–77. https://doi.org/10.1007/s10633-008-9155-4

    Article  CAS  PubMed  Google Scholar 

  22. Lakhani E, Wright T, Abdolell M, Westall C (2010) Multifocal ERG defects associated with insufficient long-term glycemic control in adolescents with type 1 diabetes. Invest Ophthalmol Vis Sci 51:5297–5303. https://doi.org/10.1167/iovs.10-5200

    Article  PubMed  Google Scholar 

  23. Bronson-Castain KW, Bearse MA Jr, Neuville J et al (2009) Adolescents with type 2 diabetes: early indications of focal retinal neuropathy, retinal thinning, and venular dilation. Retina 29:618–662. https://doi.org/10.1097/IAE.0b013e31819a988b

    Article  PubMed  PubMed Central  Google Scholar 

  24. Simão S, Costa MÂ, Sun JK, Cunha-Vaz J, Simó R, European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR) (2017) Development of a normative database for multifocal electroretinography in the context of a multicenter clinical trial. Ophthalmic Res 57:07–117. https://doi.org/10.1159/000450958

    Article  Google Scholar 

  25. Hernández C, Porta M, Bandello F et al (2020) The usefulness of serum biomarkers in the early stages of diabetic retinopathy: results of the EUROCONDOR clinical trial. J Clin Med 9:1233. https://doi.org/10.3390/jcm9041233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zetterberg H, Blennow K (2016) Fluid biomarkers for mild traumatic brain injury and related conditions. Nat Rev Neurol 12:563–574. https://doi.org/10.1038/nrneurol.2016.127

    Article  CAS  PubMed  Google Scholar 

  27. Lei J, Gao G, Feng J et al (2015) Glial fibrillary acidic protein as a biomarker in severe traumatic brain injury patients: a prospective cohort study. Crit Care 19:362–362. https://doi.org/10.1186/s13054-015-1081-8

    Article  PubMed  PubMed Central  Google Scholar 

  28. Puspitasari V, Gunawan PY, Wiradarma HD, Hartoyo V (2019) Glial fibrillary acidic protein serum level as a predictor of clinical outcome in ischemic stroke. Open Access Maced J Med Sci 7:1471–1474. https://doi.org/10.1186/s13054-015-1081-8

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chmielewska N, Szyndler J, Makowska K, Wojtyna D, Maciejak P, Płaźnik A (2018) Looking for novel, brain-derived, peripheral biomarkers of neurological disorders. Neurol Neurochir Pol 52:318–325. https://doi.org/10.1016/j.pjnns.2018.02.002

    Article  PubMed  Google Scholar 

  30. Abdelhak A, Foschi M, Abu-Rumeileh S et al (2022) Blood GFAP as an emerging biomarker in brain and spinal cord disorders. Nat Rev Neurol 18:158–172. https://doi.org/10.1038/s41582-021-00616-3

    Article  CAS  PubMed  Google Scholar 

  31. Traub J, Otto M, Sell R et al (2022) Serum glial fibrillary acidic protein indicates memory impairment in patients with chronic heart failure. ESC Heart Fail 9:2626–2634. https://doi.org/10.1002/ehf2.13986

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ebenau JL, Pelkmans W, Verberk IMW et al (2022) Association of CSF, plasma, and imaging markers of neurodegeneration with clinical progression in people with subjective cognitive decline. Neurology 98:e1315–e1326. https://doi.org/10.1212/WNL.0000000000200035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mizutani M, Gerhardinger C, Lorenzi M (1998) Müller cell changes in human diabetic retinopathy. Diabetes 47:445–449. https://doi.org/10.2337/diabetes.47.3.445

    Article  CAS  PubMed  Google Scholar 

  34. Bringmann A, Wiedemann P (2012) Müller glial cells in retinal disease. Ophthalmologica 227:1–19. https://doi.org/10.1159/000328979

    Article  PubMed  Google Scholar 

  35. Yuan A, Rao MV, Veeranna Nixon RA (2017) Neurofilaments and neurofilament proteins in health and disease. Cold Spring Harb Perspect Biol 9:a018309. https://doi.org/10.1101/cshperspect.a018309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yuan A, Rao MV, Sasaki T, Chen Y, Kumar A, Veeranna Liem RKH, Eyer J, Peterson AC, Julien JP, Nixon RA (2006) Alpha-internexin is structurally and functionally associated with the neurofilament triplet proteins in the mature CNS. J Neurosci 26:10006–10019. https://doi.org/10.1523/JNEUROSCI.2580-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yuan A, Sasaki T, Kumar A, Peterhoff CM, Rao MV, Liem RK, Julien JP, Nixon RA (2012) Peripherin is a subunit of peripheral nerve neurofilaments: implications for differential vulnerability of CNS and peripheral nervous system axons. J Neurosci 32:8501–8508. https://doi.org/10.1523/JNEUROSCI.1081-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yuan A, Nixon RA (2021) Neurofilament proteins as biomarkers to monitor neurological diseases and the efficacy of therapies. Front Neurosci 15:689938. https://doi.org/10.3389/fnins.2021.689938

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lin CH, Li CH, Yang KC et al (2019) Blood NfL: a biomarker for disease severity and progression in Parkinson disease. Neurology 93:e1104–e1111. https://doi.org/10.1212/WNL.0000000000008088

    Article  CAS  PubMed  Google Scholar 

  40. Blennow K (2017) A review of fluid biomarkers for Alzheimer’s disease: moving from CSF to blood. Neurol Ther 6:15–24. https://doi.org/10.1007/s40120-017-0073-9

    Article  PubMed  PubMed Central  Google Scholar 

  41. Williams T, Zetterberg H, Chataway J (2020) Neurofilaments in progressive multiple sclerosis: a systematic review. J Neurol 268:3212–3222. https://doi.org/10.1007/s00415-020-09917-x

    Article  PubMed  PubMed Central  Google Scholar 

  42. Moseby-Knappe M, Mattsson N, Nielsen N et al (2019) Serum neurofilament light chain for prognosis of outcome after cardiac arrest. JAMA Neurol 76:64–71. https://doi.org/10.1001/jamaneurol.2018.3223

    Article  PubMed  Google Scholar 

  43. Shahim P, Politis A, van der Merwe A, Moore B, Chou YY, Pham DL, Butman JA, Diaz-Arrastia R, Gill JM, Brody DL, Zetterberg H, Blennow K, Chan L (2020) Neurofilament light as a biomarker in traumatic brain injury. Neurology 95:e610–e622. https://doi.org/10.1212/WNL.0000000000009983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fohner AE, Bartz TM, Tracy RP et al (2022) Association of serum neurofilament light chain concentration and mri findings in older adults: the cardiovascular health study. Neurology 98:e903–e911. https://doi.org/10.1212/WNL.0000000000013229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sundstrom JM, Hernández C, Weber SR et al (2018) Proteomic analysis of early diabetic retinopathy reveals mediators of neurodegenerative brain diseases. Invest Ophthalmol Vis Sci 59:2264–2274. https://doi.org/10.1167/iovs.17-23678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Verberk IMW, Laarhuis MB, van den Bosch KA et al (2021) Serum markers glial fibrillary acidic protein and neurofilament light for prognosis and monitoring in cognitively normal older people: a prospective memory clinic-based cohort study. Lancet Healthy Longev 2:e87–e95. https://doi.org/10.1016/S2666-7568(20)30061-1

    Article  PubMed  Google Scholar 

  47. Lin TY, Vitkova V, Asseyer S et al (2021) Increased serum neurofilament light and thin ganglion cell-inner plexiform layer are additive risk factors for disease activity in early multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 8:1051. https://doi.org/10.1212/NXI.0000000000001051

    Article  Google Scholar 

  48. Khalil M, Teunissen CE, Otto M et al (2018) Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol 14:577–589. https://doi.org/10.1038/s41582-018-0058-z

    Article  CAS  PubMed  Google Scholar 

  49. Notturno F, Capasso M, DeLauretis A, Carpo M, Uncini A (2009) Glial fibrillary acidic protein as a marker of axonal damage in chronic neuropathies. Muscle Nerve 40:50–54. https://doi.org/10.1002/mus.21323

    Article  CAS  PubMed  Google Scholar 

  50. Cui M, Cheng C, Zhang L (2022) High-throughput proteomics: a methodological mini-review. Lab Invest 3:1–12. https://doi.org/10.1038/s41374-022-00830-7

    Article  Google Scholar 

  51. van Lierop ZYGJ, Verberk IMW, van Uffelen KWJ et al (2022) Pre-analytical stability of serum biomarkers for neurological disease: neurofilament-light, glial fibrillary acidic protein and contactin-1. Clin Chem Lab Med 60:842–850. https://doi.org/10.1515/cclm-2022-0007

    Article  CAS  PubMed  Google Scholar 

  52. Mattsson-Carlgren N, Palmqvist S, Blennow K, Hansson O (2020) Increasing the reproducibility of fluid biomarker studies in neurodegenerative studies. Nat Commun 11:6252. https://doi.org/10.1038/s41467-020-19957-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This project has received funding from the European Union’s Seventh Framework Programme for research, technological development, and demonstration, under grant agreement no. 278040, and from Instituto de Salud Carlos III (PI20/01703). The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Conceptualization, CH and RS; methodology, CH, OS, MP, JG, SH, UF, JG-A, LR, PS, JC, and RS; formal analysis, CH, OS, and RS; investigation, CH, OS, MP, JG, SH, UF, JG-A, LR, PS, JC, and RS; formal analysis, CH, OS, and RS; resources, CH, OS, MP, JG, SH, UF, JG-A, LR, PS, JC, and RS; writing—original draft preparation, CH; writing—review and editing, CH and RS; project administration, CH and RS; funding acquisition, EUROCONDOR Consortium (coordinator: RS). All authors have reviewed and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Cristina Hernández.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical standard statement

The study was conducted in accordance with the tenets of the Declaration of Helsinki with approvals of the local scientific ethnical committees.

Informed consent

Informed consent was obtained from all subjects involved in the study.

Additional information

This article belongs to the Topical Collection "Diabetic Eye Disease", managed by Giuseppe Querques.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Members of the EUROCONDOR Consortium: F. Bandello, R. Lattanzio (Scientific Institute San Raffaele, Italy), J. Cunha-Vaz, L. Ribeiro (Association for Innovation and Biomedical Research on Light and Image, Portugal), C. Egan (Moorfields Eye Hospital, UK), J. Garcıa-Arumí (Valld’Hebron University Hospital, Spain), J. Gibson (University of Aston, UK), S. Harding (University of Liverpool, UK), G. Lang (University of Ulm, Germany), P. Massin (Hôpital Lariboisière-APHP, France), E. Midena (University of Padova, Italy), B. Ponsati (BCN Peptides, Spain), M. Porta (University of Turin, Italy), P. Scanlon, S. J. Aldington (Cheltenham General Hospital, UK), R. Simó, C. Hernández (Vall d’Hebron Research Institute, Spain), J. Grauslund, U. Frydkjaer-Olsen (Odense University Hospital, Denmark).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández, C., Simó-Servat, O., Porta, M. et al. Serum glial fibrillary acidic protein and neurofilament light chain as biomarkers of retinal neurodysfunction in early diabetic retinopathy: results of the EUROCONDOR study. Acta Diabetol 60, 837–844 (2023). https://doi.org/10.1007/s00592-023-02076-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-023-02076-1

Keywords

Navigation