Log in

Comparison of complications, revisions, spinopelvic parameters, and health-related quality of life after posterior spinal fusion using multiple-rod constructs or two-rod constructs for adult spinal deformity: a systematic review and meta-analysis

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Background

The incidence of mechanical complications is high in patients undergoing posterior spinal fusion (PSF) for adult spinal deformity (ASD), especially for cases with severe sagittal malalignment or a prior spinal fusion requiring three-column osteotomy (3-CO) or spinopelvic fixation (SPF). The purpose of this systematic review and meta-analysis was to compare the complications, revisions, radiographic spinopelvic parameters, health-related quality of life (HRQoL), and surgical data of PSF using multiple-rod constructs to those of two-rod constructs for the treatment of ASD.

Methods

A comprehensive literature search was performed for relevant studies in PubMed, EMBASE, Web of Science, and the Cochrane Library. Complications, revisions, spinopelvic parameters, HRQoL, and surgical date were compared between patients with ASD who underwent PSF using multiple-rod constructs (multi-rod group) and two-rod constructs (two-rod group).

Results

Ten studies, comprising 797 patients with ASD (399 in the multi-rod group and 398 in the two-rod group), were included. All these studies were retrospective cohort studies. There were no significant differences in the surgical, wound-related, and systemic complications between the groups. In the multi-rod group, we noted a significantly lower incidence of rod fracture (RR, 0.43; 95% CI 0.33 to 0.57, P < 0.01), pseudoarthrosis (RR, 0.38; 95% CI 0.28 to 0.53, P < 0.01), and revisions (RR, 0.44; 95% CI 0.33 to 0.58, P < 0.01); a superior restoration of PI-LL (WMD, 3.96; 95% CI 1.03 to 6.88, P < 0.01) and SVA (WMD, 31.53; 95% CI 21.16 to 41.90, P < 0.01); a better improvement of ODI score (WMD, 6.82; 95% CI 2.33 to 11.31, P < 0.01), SRS-22 total score (WMD, 0.44; 95% CI 0.06 to 0.83, P = 0.02), and VAS-BP score (WMD, 1.02; 95% CI 0.31 to 1.73, P < 0.01).

Conclusion

Compared with the two-rod constructs, PSF using multiple-rod constructs was associated with a lower incidence of mechanical complications, a lower revision rate, a superior restoration of sagittal alignment, and a better improvement of HRQoL, without increasing surgical invasiveness. Multiple-rod constructs should be routinely considered to for ASD patients, especially for cases with severe sagittal malalignment or a prior spinal fusion requiring 3-CO or SPF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kim HJ, Yang JH, Chang DG, Suk SI, Suh SW, Song KS, Park JB, Cho W (2020) Adult spinal deformity: current concepts and decision-making strategies for management. Asian Spine J 14:886–897. https://doi.org/10.31616/asj.2020.0568

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ames CP, Scheer JK, Lafage V, Smith JS, Bess S, Berven SH, Mundis GM, Sethi RK, Deinlein DA, Coe JD, Hey LA, Daubs MD (2016) Adult spinal deformity: epidemiology, health impact, evaluation, and management. Spine Deform 4:310–322. https://doi.org/10.1016/j.jspd.2015.12.009

    Article  PubMed  Google Scholar 

  3. Yang H, Liu J, Hai Y, Han B (2023) What are the benefits of lateral lumbar interbody fusion on the treatment of adult spinal deformity: a systematic review and meta-analysis deformity. Global Spine J 13:172–187. https://doi.org/10.1177/21925682221089876

    Article  PubMed  Google Scholar 

  4. Pellisé F, Vila-Casademunt A, Ferrer M, Domingo-Sàbat M, Bagó J, Pérez-Grueso FJ, Alanay A, Mannion AF, Acaroglu E (2015) Impact on health related quality of life of adult spinal deformity (ASD) compared with other chronic conditions. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 24:3–11. https://doi.org/10.1007/s00586-014-3542-1

    Article  Google Scholar 

  5. Safaee MM, Ames CP, Smith JS (2020) Epidemiology and socioeconomic trends in adult spinal deformity care. Neurosurgery 87:25–32. https://doi.org/10.1093/neuros/nyz454

    Article  PubMed  Google Scholar 

  6. Passias PG, Krol O, Passfall L, Lafage V, Lafage R, Smith JS, Line B, Vira S, Daniels AH, Diebo B, Schoenfeld AJ, Gum J, Kebaish K, Than K, Kim HJ, Hostin R, Gupta M, Eastlack R, Burton D, Schwab FJ, Shaffrey C, Klineberg EO, Bess S (2022) Three-column osteotomy in adult spinal deformity: an analysis of temporal trends in usage and outcomes. J Bone Joint Surg Am 104:1895–1904. https://doi.org/10.2106/jbjs.21.01172

    Article  PubMed  Google Scholar 

  7. Lee NJ, Marciano G, Puvanesarajah V, Park PJ, Clifton WE, Kwan K, Morrissette CR, Williams JL, Fields M, Hassan FM, Angevine PD, Mandigo CE, Lombardi JM, Sardar ZM, Lehman RA, Lenke LG (2022) Incidence, mechanism, and protective strategies for 2-year pelvic fixation failure after adult spinal deformity surgery with a minimum six-level fusion. J Neurosurg Spine. https://doi.org/10.3171/2022.8.Spine22755

    Article  PubMed  Google Scholar 

  8. Barton C, Noshchenko A, Patel V, Cain C, Kleck C, Burger E (2015) Risk factors for rod fracture after posterior correction of adult spinal deformity with osteotomy: a retrospective case-series. Scoliosis 10:30. https://doi.org/10.1186/s13013-015-0056-5

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lertudomphonwanit T, Kelly MP, Bridwell KH, Lenke LG, McAnany SJ, Punyarat P, Bryan TP, Buchowski JM, Zebala LP, Sides BA, Steger-May K, Gupta MC (2018) Rod fracture in adult spinal deformity surgery fused to the sacrum: prevalence, risk factors, and impact on health-related quality of life in 526 patients. Spine J 18:1612–1624. https://doi.org/10.1016/j.spinee.2018.02.008

    Article  PubMed  Google Scholar 

  10. Sardi JP, Lazaro B, Smith JS, Kelly MP, Dial B, Hills J, Yanik EL, Gupta M, Baldus CR, Yen CP, Lafage V, Ames CP, Bess S, Schwab F, Shaffrey CI, Bridwell KH (2022) Rod fractures in thoracolumbar fusions to the sacrum/pelvis for adult symptomatic lumbar scoliosis: long-term follow-up of a prospective, multicenter cohort of 160 patients. J Neurosurg Spine. https://doi.org/10.3171/2022.8.Spine22423

    Article  PubMed  PubMed Central  Google Scholar 

  11. Adogwa O, Buchowski JM, Lenke LG, Shlykov MA, El Dafrawy M, Lertudomphonwanit T, Obey MR, Koscso J, Gupta MC, Bridwell KH (2019) Comparison of rod fracture rates in long spinal deformity constructs after transforaminal versus anterior lumbar interbody fusions: a single-institution analysis. J Neurosurg Spine. https://doi.org/10.3171/2019.7.Spine19630

    Article  PubMed  Google Scholar 

  12. Lee KY, Lee JH, Kang KC, Im SK, Lim HS, Choi SW (2021) Strategies for prevention of rod fracture in adult spinal deformity: cobalt chrome rod, accessory rod technique, and lateral lumbar interbody fusion. J Neurosurg Spine. https://doi.org/10.3171/2020.8.Spine201037

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bourghli A, Boissiere L, Cawley D, Larrieu D, Pizones J, Alanay A, PelIise F, Kleinstück F, Obeid I (2022) Domino connector is an efficient tool to improve lumbar lordosis correction angle after pedicle subtraction osteotomy for adult spinal deformity. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 31:2408–2414. https://doi.org/10.1007/s00586-022-07322-8

    Article  Google Scholar 

  14. Gupta S, Eksi MS, Ames CP, Deviren V, Durbin-Johnson B, Smith JS, Gupta MC (2018) A novel 4-rod technique offers potential to reduce rod breakage and pseudarthrosis in pedicle subtraction osteotomies for adult spinal deformity correction. Oper Neurosurg (Hagerstown) 14:449–456. https://doi.org/10.1093/ons/opx151

    Article  PubMed  Google Scholar 

  15. Bari TJ, Hansen LV, Dahl B, Gehrchen M (2022) Use of demineralized cortical fibers is associated with reduced risk of pseudarthrosis after pedicle subtraction osteotomy for adult spinal deformity. Spine Deform 10:657–667. https://doi.org/10.1007/s43390-021-00444-x

    Article  PubMed  Google Scholar 

  16. Bourghli A, Boissiere L, Larrieu D, Vital JM, Yilgor C, Pellisé F, Alanay A, Acaroglu E, Perez-Grueso FJ, Kleinstück F, Obeid I (2017) Lack of improvement in health-related quality of life (HRQOL) scores 6 months after surgery for adult spinal deformity (ASD) predicts high revision rate in the second postoperative year. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 26:2160–2166. https://doi.org/10.1007/s00586-017-5068-9

    Article  Google Scholar 

  17. Ntilikina Y, Charles YP, Persohn S, Skalli W (2020) Influence of double rods and interbody cages on quasistatic range of motion of the spine after lumbopelvic instrumentation. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 29:2980–2989. https://doi.org/10.1007/s00586-020-06594-2

    Article  Google Scholar 

  18. Godzik J, Hlubek RJ, Newcomb A, Lehrman JN, de Andrada PB, Farber SH, Lenke LG, Kelly BP, Turner JD (2019) Supplemental rods are needed to maximally reduce rod strain across the lumbosacral junction with TLIF but not ALIF in long constructs. Spine J 19:1121–1131. https://doi.org/10.1016/j.spinee.2019.01.005

    Article  PubMed  Google Scholar 

  19. Hallager DW, Gehrchen M, Dahl B, Harris JA, Gudipally M, Jenkins S, Wu AM, Bucklen BS (2016) Use of supplemental short pre-contoured accessory rods and cobalt chrome alloy posterior rods reduces primary rod strain and range of motion across the pedicle subtraction osteotomy level: an in vitro biomechanical study. Spine (Phila Pa 1976) 41:E388-395. https://doi.org/10.1097/brs.0000000000001282

    Article  PubMed  Google Scholar 

  20. Yang H, Pan A, Hai Y, Cheng F, Ding H, Liu Y (2023) Biomechanical evaluation of multiple pelvic screws and multirod construct for the augmentation of lumbosacral junction in long spinal fusion surgery. Front Bioeng Biotechnol 11:1148342. https://doi.org/10.3389/fbioe.2023.1148342

    Article  PubMed  PubMed Central  Google Scholar 

  21. Banno T, Hasegawa T, Yamato Y, Togawa D, Yoshida G, Kobayashi S, Yasuda T, Arima H, Oe S, Mihara Y, Ushirozako H, Matsuyama Y (2019) Multi-rod constructs can increase the incidence of iliac screw loosening after surgery for adult spinal deformity. Asian Spine J 13:500–510. https://doi.org/10.31616/asj.2018.0209

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chanbour H, Hassan FM, Zuckerman SL, Park PJ, Morrissette C, Cerpa M, Lee NJ, Ha AS, Lehman RA Jr, Lenke LG (2022) Rod fractures after multi-rod constructs in adult spinal deformity patients fused to the sacrum/pelvis: where do they occur and why? Spine Deform. https://doi.org/10.1007/s43390-022-00611-8

    Article  PubMed  Google Scholar 

  23. Jung JM, Hyun SJ, Kim KJ, Jahng TA (2019) Rod fracture after multiple-rod constructs for adult spinal deformity. J Neurosurg Spine. https://doi.org/10.3171/2019.9.Spine19913

    Article  PubMed  Google Scholar 

  24. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700. https://doi.org/10.1136/bmj.b2700

    Article  PubMed  PubMed Central  Google Scholar 

  25. Davies S (2012) The importance of PROSPERO to the National Institute for Health Research. Syst Rev 1:5. https://doi.org/10.1186/2046-4053-1-5

    Article  PubMed  PubMed Central  Google Scholar 

  26. Neuman BJ, Ailon T, Scheer JK, Klineberg E, Sciubba DM, Jain A, Zebala LP, Passias PG, Daniels AH, Burton DC, Protopsaltis TS, Hamilton DK, Ames CP (2018) Development and validation of a novel adult spinal deformity surgical invasiveness score: analysis of 464 patients. Neurosurgery 82:847–853. https://doi.org/10.1093/neuros/nyx303

    Article  PubMed  Google Scholar 

  27. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25:603–605. https://doi.org/10.1007/s10654-010-9491-z

    Article  PubMed  Google Scholar 

  28. Wright JG, Swiontkowski MF, Heckman JD (2003) Introducing levels of evidence to the journal. J Bone Joint Surg Am 85:1–3

    Article  PubMed  Google Scholar 

  29. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634. https://doi.org/10.1136/bmj.315.7109.629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Duval S, Tweedie R (2000) Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56:455–463. https://doi.org/10.1111/j.0006-341x.2000.00455.x

    Article  CAS  PubMed  Google Scholar 

  31. Hyun SJ, Lenke LG, Kim YC, Koester LA, Blanke KM (2014) Comparison of standard 2-rod constructs to multiple-rod constructs for fixation across 3-column spinal osteotomies. Spine 39:1899–1904. https://doi.org/10.1097/BRS.0000000000000556

    Article  PubMed  Google Scholar 

  32. Han S, Hyun SJ, Kim KJ, Jahng TA, Lee S, Rhim SC (2017) Rod stiffness as a risk factor of proximal junctional kyphosis after adult spinal deformity surgery: comparative study between cobalt chrome multiple-rod constructs and titanium alloy two-rod constructs. Spine J 17:962–968. https://doi.org/10.1016/j.spinee.2017.02.005

    Article  PubMed  Google Scholar 

  33. Merrill RK, Kim JS, Leven DM, Kim JH, Cho SK (2017) Multi-rod constructs can prevent rod breakage and pseudarthrosis at the lumbosacral junction in adult spinal deformity. Global Spine J 7:514–520. https://doi.org/10.1177/2192568217699392

    Article  PubMed  PubMed Central  Google Scholar 

  34. Guevara-Villazón F, Boissiere L, Hayashi K, Larrieu D, Ghailane S, Vital JM, Gille O, Pointillart V, Obeid I, Bourghli A (2020) Multiple-rod constructs in adult spinal deformity surgery for pelvic-fixated long instrumentations: an integral matched cohort analysis. Eur Spine J 29:886–895. https://doi.org/10.1007/s00586-020-06311-z

    Article  PubMed  Google Scholar 

  35. Yamato Y, Hasegawa T, Togawa D, Yoshida G, Banno T, Arima H, Oe S, Mihara Y, Ushirozako H, Yasuda T, Matsuyama Y (2020) Long additional rod constructs can reduce the incidence of rod fractures following 3-column osteotomy with pelvic fixation in short term. Spine Deform 8:481–490. https://doi.org/10.1007/s43390-020-00071-y

    Article  PubMed  Google Scholar 

  36. Bourghli A, Boissiere L, Kieser D, Larrieu D, Pizones J, Alanay A, Pellise F, Kleinstuck F, Obeid I, European Spine Study G (2021) Multiple-rod constructs do not reduce pseudarthrosis and rod fracture after pedicle subtraction osteotomy for adult spinal deformity correction but improve quality of life. Neurospine 18:816–823. https://doi.org/10.14245/ns.2142596.298

    Article  Google Scholar 

  37. Dinizo M, Passias P, Kebaish K, Errico TJ, Raman T (2021) The Approach to pseudarthrosis after adult spinal deformity surgery: Is a multiple-rod construct necessary? Global Spine J. https://doi.org/10.1177/21925682211001880

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lamas V, Charles YP, Tuzin N, Steib JP (2021) Comparison of degenerative lumbar scoliosis correction and risk for mechanical failure using posterior 2-rod instrumentation versus 4-rod instrumentation and interbody fusion. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 30:1965–1977. https://doi.org/10.1007/s00586-021-06870-9

    Article  Google Scholar 

  39. Rabinovich EP, Buell TJ, Wang TR, Shaffrey CI, Smith JS (2021) Reduced occurrence of primary rod fracture after adult spinal deformity surgery with accessory supplemental rods: retrospective analysis of 114 patients with minimum 2-year follow-up. J Neurosurg Spine 35:504–515. https://doi.org/10.3171/2020.12.SPINE201527

    Article  PubMed  Google Scholar 

  40. Lyu Q, Lau D, Haddad AF, Deviren V, Ames CP (2022) Multiple-rod constructs and use of bone morphogenetic protein–2 in relation to lower rod fracture rates in 141 patients with adult spinal deformity who underwent lumbar pedicle subtraction osteotomy. J Neurosurg Spine 36:235–245. https://doi.org/10.3171/2021.3.SPINE201968

    Article  Google Scholar 

  41. Moniz-Garcia D, Stoloff D, Akinduro O, De Biase G, Sousa-Pinto B, Beeler C, Elder BD, Buchanan I, Abode-Iyamah K (2023) Two- versus multi-rod constructs for adult spinal deformity: a systematic review and Random-effects and Bayesian meta-analysis. J Clin Neurosci 107:9–15. https://doi.org/10.1016/j.jocn.2022.11.011

    Article  PubMed  Google Scholar 

  42. Sebaaly A, Gehrchen M, Silvestre C, Kharrat K, Bari TJ, Kreichati G, Rizkallah M, Roussouly P (2020) Mechanical complications in adult spinal deformity and the effect of restoring the spinal shapes according to the Roussouly classification: a multicentric study. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 29:904–913. https://doi.org/10.1007/s00586-019-06253-1

    Article  Google Scholar 

  43. Teles AR, Aldebeyan S, Aoude A, Swamy G, Nicholls FH, Thomas KC, Jacobs WB (2022) Mechanical complications in adult spinal deformity surgery: Can spinal alignment explain everything? Spine (Phila Pa 1976) 47:E1-e9. https://doi.org/10.1097/brs.0000000000004217

    Article  PubMed  Google Scholar 

  44. Ham DW, Kim HJ, Choi JH, Park J, Lee J, Yeom JS (2021) Validity of the global alignment proportion (GAP) score in predicting mechanical complications after adult spinal deformity surgery in elderly patients. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 30:1190–1198. https://doi.org/10.1007/s00586-021-06734-2

    Article  Google Scholar 

  45. Smith JS, Shaffrey CI, Ames CP, Demakakos J, Fu KM, Keshavarzi S, Li CM, Deviren V, Schwab FJ, Lafage V, Bess S (2012) Assessment of symptomatic rod fracture after posterior instrumented fusion for adult spinal deformity. Neurosurgery 71:862–867. https://doi.org/10.1227/NEU.0b013e3182672aab

    Article  PubMed  Google Scholar 

  46. Khalid SI, Nunna RS, Smith JS, Shanker RM, Cherney AA, Thomson KB, Chilakapati S, Mehta AI, Adogwa O (2022) The role of bone mineral density in adult spinal deformity patients undergoing corrective surgery: a matched analysis. Acta Neurochir (Wien) 164:2327–2335. https://doi.org/10.1007/s00701-022-05317-4

    Article  PubMed  Google Scholar 

  47. Dickson DD, Lenke LG, Bridwell KH, Koester LA (2014) Risk factors for and assessment of symptomatic pseudarthrosis after lumbar pedicle subtraction osteotomy in adult spinal deformity. Spine (Phila Pa 1976) 39:1190–1195. https://doi.org/10.1097/brs.0000000000000380

    Article  PubMed  Google Scholar 

  48. Lee KY, Lee JH, Kang KC, Shin SJ, Shin WJ, Im SK, Park JH (2020) Strategy for obtaining solid fusion at L5–S1 in adult spinal deformity: risk factor analysis for nonunion at L5–S1. J Neurosurg Spine. https://doi.org/10.3171/2020.2.Spine191181

    Article  PubMed  Google Scholar 

  49. Doodkorte RJP, Vercoulen TFG, Roth AK, de Bie RA, Willems PC (2021) Instrumentation techniques to prevent proximal junctional kyphosis and proximal junctional failure in adult spinal deformity correction-a systematic review of biomechanical studies. Spine J 21:842–854. https://doi.org/10.1016/j.spinee.2021.01.011

    Article  PubMed  Google Scholar 

  50. Kyrölä K, Repo J, Mecklin JP, Ylinen J, Kautiainen H, Häkkinen A (2018) Spinopelvic changes based on the simplified SRS-Schwab adult spinal deformity classification: relationships with disability and health-related quality of life in adult patients with prolonged degenerative spinal disorders. Spine (Phila Pa 1976) 43:497–502. https://doi.org/10.1097/brs.0000000000002370

    Article  PubMed  Google Scholar 

  51. Takemoto M, Boissière L, Vital JM, Pellisé F, Perez-Grueso FJS, Kleinstück F, Acaroglu ER, Alanay A, Obeid I (2017) Are sagittal spinopelvic radiographic parameters significantly associated with quality of life of adult spinal deformity patients? Multivariate linear regression analyses for pre-operative and short-term post-operative health-related quality of life. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 26:2176–2186. https://doi.org/10.1007/s00586-016-4872-y

    Article  Google Scholar 

  52. Lertudomphonwanit T, Bridwell KH, Kelly MP, Punyarat P, Theologis A, Sides BA, Gupta MC (2020) Relationship of the character of rod fractures on outcomes following long thoracolumbar fusion to the sacrum for adult spinal deformity. Spine J 20:1452–1463. https://doi.org/10.1016/j.spinee.2020.05.553

    Article  PubMed  Google Scholar 

  53. Muellner M, Haffer H, Chiapparelli E, Dodo Y, Tan ET, Shue J, Zhu J, Sama AA, Cammisa FP, Girardi FP, Hughes AP (2022) Differences in lumbar paraspinal muscle morphology in patients with sagittal malalignment undergoing posterior lumbar fusion surgery. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 31:3109–3118. https://doi.org/10.1007/s00586-022-07351-3

    Article  Google Scholar 

  54. Yang H, Li Z, Hai Y, Zhang H (2023) The role of lumbosacral paraspinal muscle degeneration and low vertebral bone mineral density on distal instrumentation-related problems following long-instrumented spinal fusion for degenerative lumbar scoliosis: a retrospective cohort study. Quant Imaging Med Surg 13:4475–4492. https://doi.org/10.21037/qims-22-1394

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yuksel S, Ayhan S, Nabiyev V, Domingo-Sabat M, Vila-Casademunt A, Obeid I, Perez-Grueso FS, Acaroglu E (2019) Minimum clinically important difference of the health-related quality of life scales in adult spinal deformity calculated by latent class analysis: is it appropriate to use the same values for surgical and nonsurgical patients? Spine J 19:71–78. https://doi.org/10.1016/j.spinee.2018.07.005

    Article  PubMed  Google Scholar 

  56. Acaroğlu RE, Dede Ö, Pellisé F, Güler ÜO, Domingo-Sàbat M, Alanay A, Pérez-Grueso FS (2016) Adult spinal deformity: a very heterogeneous population of patients with different needs. Acta Orthop Traumatol Turc 50:57–62. https://doi.org/10.3944/aott.2016.14.0421

    Article  PubMed  Google Scholar 

  57. Fujishiro T, Boissière L, Cawley DT, Larrieu D, Gille O, Vital JM, Pellisé F, Pérez-Grueso FJS, Kleinstück F, Acaroglu E, Alanay A, Obeid I (2019) Adult spinal deformity surgical decision-making score : Part 1: development and validation of a scoring system to guide the selection of treatment modalities for patients below 40 years with adult spinal deformity. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 28:1652–1660. https://doi.org/10.1007/s00586-019-05932-3

    Article  Google Scholar 

  58. Fujishiro T, Boissière L, Cawley DT, Larrieu D, Gille O, Vital JM, Pellisé F, Pérez-Grueso FJS, Kleinstück F, Acaroglu E, Alanay A, Obeid I (2020) Adult spinal deformity surgical decision-making score. Part 2: development and validation of a scoring system to guide the selection of treatment modalities for patients above 40 years with adult spinal deformity. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 29:45–53. https://doi.org/10.1007/s00586-019-06068-0

    Article  Google Scholar 

  59. Ramey WL, Jack AS, Chapman JR (2021) The lexicon of multirod constructs in adult spinal deformity: a concise description of when, why, and how. J Neurosurg Spine. https://doi.org/10.3171/2021.10.Spine21745

    Article  PubMed  Google Scholar 

  60. Glassman SD, Anagnost SC, Parker A, Burke D, Johnson JR, Dimar JR (2000) The effect of cigarette smoking and smoking cessation on spinal fusion. Spine (Phila Pa 1976) 25:2608–2615. https://doi.org/10.1097/00007632-200010150-00011

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Hai.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Li, Z., Hai, Y. et al. Comparison of complications, revisions, spinopelvic parameters, and health-related quality of life after posterior spinal fusion using multiple-rod constructs or two-rod constructs for adult spinal deformity: a systematic review and meta-analysis. Eur Spine J 32, 3634–3650 (2023). https://doi.org/10.1007/s00586-023-07876-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-023-07876-1

Keywords

Navigation