Log in

Paraspinal muscle imaging measurements for common spinal disorders: review and consensus-based recommendations from the ISSLS degenerative spinal phenotypes group

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Paraspinal muscle imaging is of growing interest related to improved phenoty**, prognosis, and treatment of common spinal disorders. We reviewed issues related to paraspinal muscle imaging measurement that contribute to inconsistent findings between studies and impede understanding.

Methods

Three key contributors to inconsistencies among studies of paraspinal muscle imaging measurements were reviewed: failure to consider possible mechanisms underlying changes in paraspinal muscles, lack of control of confounding factors, and variations in spinal muscle imaging modalities and measurement protocols. Recommendations are provided to address these issues to improve the quality and coherence of future research.

Results

Possible pathophysiological responses of paraspinal muscle to various common spinal disorders in acute or chronic phases are often overlooked, yet have important implications for the timing, distribution, and nature of changes in paraspinal muscle. These considerations, as well as adjustment for possible confounding factors, such as sex, age, and physical activity must be considered when planning and interpreting paraspinal muscle measurements in studies of spinal conditions. Adoption of standardised imaging measurement protocols for paraspinal muscle morphology and composition, considering the strengths and limitations of various imaging modalities, is critically important to interpretation and synthesis of research.

Conclusion

Study designs that consider physiological and pathophysiological responses of muscle, adjust for possible confounding factors, and use common, standardised measures are needed to advance knowledge of the determinants of variations or changes in paraspinal muscle and their influence on spinal health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

All data are presented in the paper.

References

  1. Cooley JR, Walker BF, Ardakani M E et al (2018) Relationships between paraspinal muscle morphology and neurocompressive conditions of the lumbar spine: a systematic review with meta-analysis. BMC Musculoskelet Disord 19:351. https://doi.org/10.1186/s12891-018-2266-5

    Article  PubMed  PubMed Central  Google Scholar 

  2. Goubert D, Oosterwijck JV, Meeus M, Danneels L (2016) Structural changes of lumbar muscles in non-specific low back pain: a systematic review. Pain Physician 19:E985–E1000

    PubMed  Google Scholar 

  3. Kalichman L, Carmeli E, Been E (2017) The Association between Imaging Parameters of the Paraspinal Muscles, Spinal Degeneration, and Low Back Pain. Biomed Res Int 2017:2562957. https://doi.org/10.1155/2017/2562957

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ranger TA, Cicuttini FM, Jensen TS et al (2017) Are the size and composition of the paraspinal muscles associated with low back pain? A systematic review. Spine J 17:1729–1748. https://doi.org/10.1016/j.spinee.2017.07.002

    Article  PubMed  Google Scholar 

  5. Rummens S, Robben E, De Groef A et al (2020) Factors associated with the ultrasound characteristics of the lumbar multifidus: A systematic review. PMR 12:82–100. https://doi.org/10.1002/pmrj.12212

    Article  Google Scholar 

  6. Cuellar WA, Wilson A, Blizzard CL et al (2017) The assessment of abdominal and multifidus muscles and their role in physical function in older adults: a systematic review. Physiother 103:21–39. https://doi.org/10.1016/j.physio.2016.06.001

    Article  CAS  Google Scholar 

  7. Crawford RJ, Volken T, Ni Mhuiris Á et al (2019) Geography of lumbar paravertebral muscle fatty infiltration: the influence of demographics, low back pain, and disability. Spine 44:1294–1302. https://doi.org/10.1097/BRS.0000000000003060

    Article  PubMed  Google Scholar 

  8. Macintosh JE, Bogduk N (1987) 1987 Volvo award in basic science. The morphology of the lumbar erector spinae. Spine 12:658–668

    Article  CAS  Google Scholar 

  9. Ekholm J, Eklund G, Skoglund S (1960) On the reflex effects from the knee joint of the cat. Acta Physiol Scand 50:167–174. https://doi.org/10.1111/j.1748-1716.1960.tb02087.x

    Article  CAS  PubMed  Google Scholar 

  10. Lundberg A, Malmgren K, Schomburg ED (1978) Role of joint afferents in motor control exemplified by effects on reflex pathways from Ib afferents. J Physiol (Lond) 284:327–343. https://doi.org/10.1113/jphysiol.1978.sp012543

    Article  CAS  Google Scholar 

  11. Stokes M, Young A (1984) The contribution of reflex inhibition to arthrogenous muscle weakness. Clin Sci 67:7–14. https://doi.org/10.1042/cs0670007

    Article  CAS  Google Scholar 

  12. Iles JF, Stokes M, Young A (1990) Reflex actions of knee joint afferents during contraction of the human quadriceps. Clin Physiol 10:489–500. https://doi.org/10.1111/j.1475-097x.1990.tb00828.x

    Article  CAS  PubMed  Google Scholar 

  13. Hodges PW, Galea MP, Holm S, Holm AK (2009) Corticomotor excitability of back muscles is affected by intervertebral disc lesion in pigs. Eur J Neurosci 29:1490–1500. https://doi.org/10.1111/j.1460-9568.2009.06670.x

    Article  PubMed  Google Scholar 

  14. Hides JA, Stokes MJ, Saide M et al (1994) Evidence of lumbar multifidus muscle wasting ipsilateral to symptoms in patients with acute/subacute low back pain. Spine 19:165–172

    Article  CAS  Google Scholar 

  15. Hodges P, Holm AK, Hansson T, Holm S (2006) Rapid atrophy of the lumbar multifidus follows experimental disc or nerve root injury. Spine 31:2926–2933. https://doi.org/10.1097/01.brs.0000248453.51165.0b

    Article  PubMed  Google Scholar 

  16. Haig AJ, Tong HC, Yamakawa KSJ et al (2005) The sensitivity and specificity of electrodiagnostic testing for the clinical syndrome of lumbar spinal stenosis. Spine 30:2667–2676. https://doi.org/10.1097/01.brs.0000188400.11490.5f

    Article  PubMed  Google Scholar 

  17. Haig AJ (1997) Clinical experience with paraspinal map**. I: Neurophysiology of the paraspinal muscles in various spinal disorders. Arch Phys Med Rehabil 78:1177–1184. https://doi.org/10.1016/s0003-9993(97)90328-2

    Article  CAS  PubMed  Google Scholar 

  18. Haig AJ, LeBreck DB, Powley SG (1995) Paraspinal map**. Quantified needle electromyography of the paraspinal muscles in persons without low back pain. Spine 20:715–721

    Article  CAS  Google Scholar 

  19. Dulor JP, Cambon B, Vigneron P et al (1998) Expression of specific white adipose tissue genes in denervation-induced skeletal muscle fatty degeneration. FEBS Lett 439:89–92. https://doi.org/10.1016/s0014-5793(98)01216-2

    Article  CAS  PubMed  Google Scholar 

  20. Haig AJ (2002) Paraspinal denervation and the spinal degenerative cascade. Spine J 2:372–380. https://doi.org/10.1016/S1529-9430(02)00201-2

    Article  PubMed  Google Scholar 

  21. Yoshihara K, Shirai Y, Nakayama Y et al (2001) Histochemical changes in the multifidus muscle in patients with lumbar intervertebral disc herniation. Spine 26(6):622–626. https://doi.org/10.1097/00007632-200103150-00012

    Article  CAS  PubMed  Google Scholar 

  22. Beeler S, Ek ETH, Gerber C (2013) A comparative analysis of fatty infiltration and muscle atrophy in patients with chronic rotator cuff tears and suprascapular neuropathy. J Shoulder Elbow Surg 22:1537–1546. https://doi.org/10.1016/j.jse.2013.01.028

    Article  PubMed  Google Scholar 

  23. Danneels LA, Coorevits PL, Cools AM et al (2002) Differences in electromyographic activity in the multifidus muscle and the iliocostalis lumborum between healthy subjects and patients with sub-acute and chronic low back pain. Eur Spine J 11:13–19. https://doi.org/10.1007/s005860100314

    Article  CAS  PubMed  Google Scholar 

  24. MacDonald D, Moseley GL, Hodges PW (2009) Why do some patients keep hurting their back? Evidence of ongoing back muscle dysfunction during remission from recurrent back pain. Pain 142:183–188. https://doi.org/10.1016/j.pain.2008.12.002

    Article  PubMed  Google Scholar 

  25. Dankaerts W, O’Sullivan P, Burnett A, Straker L (2006) Differences in sitting postures are associated with nonspecific chronic low back pain disorders when patients are subclassified. Spine 31:698–704. https://doi.org/10.1097/01.brs.0000202532.76925.d2

    Article  PubMed  Google Scholar 

  26. Elgueta-Cancino E, Schabrun S, Hodges P (2018) Is the organization of the primary motor cortex in low back pain related to pain, movement, and/or sensation? Clin J Pain 34:207–216. https://doi.org/10.1097/AJP.0000000000000535

    Article  PubMed  Google Scholar 

  27. Tsao H, Danneels LA, Hodges PW (2011) ISSLS prize winner: smudging the motor brain in young adults with recurrent low back pain. Spine 36:1721–1727. https://doi.org/10.1097/BRS.0b013e31821c4267

    Article  PubMed  Google Scholar 

  28. Massé-Alarie H, Beaulieu L-D, Preuss R, Schneider C (2016) Corticomotor control of lumbar multifidus muscles is impaired in chronic low back pain: concurrent evidence from ultrasound imaging and double-pulse transcranial magnetic stimulation. Exp Brain Res 234:1033–1045. https://doi.org/10.1007/s00221-015-4528-x

    Article  PubMed  Google Scholar 

  29. Kiesel KB, Butler RJ, Duckworth A et al (2012) Experimentally induced pain alters the EMG activity of the lumbar multifidus in asymptomatic subjects. Man Ther 17:236–240. https://doi.org/10.1016/j.math.2012.01.008

    Article  PubMed  Google Scholar 

  30. Hodges PW, Moseley GL, Gabrielsson A, Gandevia SC (2003) Experimental muscle pain changes feedforward postural responses of the trunk muscles. Exp Brain Res 151:262–271. https://doi.org/10.1007/s00221-003-1457-x

    Article  PubMed  Google Scholar 

  31. van Dieën JH, Selen LPJ, Cholewicki J (2003) Trunk muscle activation in low-back pain patients, an analysis of the literature. J Electromyogr Kinesiol 13:333–351. https://doi.org/10.1016/S1050-6411(03)00041-5

    Article  PubMed  Google Scholar 

  32. Riley DA, Bain JLW, Romatowski JG, Fitts RH (2005) Skeletal muscle fiber atrophy: altered thin filament density changes slow fiber force and shortening velocity. Am J Physiol Cell Physiol 288:C360–C365. https://doi.org/10.1152/ajpcell.00386.2004

    Article  CAS  PubMed  Google Scholar 

  33. Hides JA, Belavý DL, Stanton W et al (2007) Magnetic resonance imaging assessment of trunk muscles during prolonged bed rest. Spine 32:1687–1692. https://doi.org/10.1097/BRS.0b013e318074c386

    Article  PubMed  Google Scholar 

  34. Bailey JF, Miller SL, Khieu K et al (2018) From the international space station to the clinic: how prolonged unloading may disrupt lumbar spine stability. Spine J 18:7–14. https://doi.org/10.1016/j.spinee.2017.08.261

    Article  PubMed  Google Scholar 

  35. Gerber C, Meyer DC, Schneeberger AG et al (2004) Effect of tendon release and delayed repair on the structure of the muscles of the rotator cuff: an experimental study in sheep. J Bone Joint Surg Am 86:1973–1982. https://doi.org/10.2106/00004623-200409000-00016

    Article  CAS  PubMed  Google Scholar 

  36. Kim HM, Galatz LM, Lim C et al (2012) The effect of tear size and nerve injury on rotator cuff muscle fatty degeneration in a rodent animal model. J Shoulder Elbow Surg 21:847–858. https://doi.org/10.1016/j.jse.2011.05.004

    Article  PubMed  Google Scholar 

  37. Akimoto T, Ushida T, Miyaki S et al (2005) Mechanical stretch inhibits myoblast-to-adipocyte differentiation through Wnt signaling. Biochem Biophys Res Commun 329:381–385. https://doi.org/10.1016/j.bbrc.2005.01.136

    Article  CAS  PubMed  Google Scholar 

  38. Alston W, Carlson KE, Feldman DJ et al (1966) A quantitative study of muscle factors in the chronic low back syndrome. J Am Geriatr Soc 14:1041–1047. https://doi.org/10.1111/j.1532-5415.1966.tb02885.x

    Article  CAS  PubMed  Google Scholar 

  39. Claus AP, Hides JA, Moseley GL, Hodges PW (2009) Different ways to balance the spine: subtle changes in sagittal spinal curves affect regional muscle activity. Spine 34:E208–E214. https://doi.org/10.1097/BRS.0b013e3181908ead

    Article  PubMed  Google Scholar 

  40. Hodges PW, James G, Blomster L et al (2014) Can pro-inflammatory cytokine gene expression explain multifidus muscle fiber changes after an intervertebral disc lesion? Spine 39:1010–1017

    Article  Google Scholar 

  41. Hodges PW, James G, Blomster L et al (2015) Multifidus muscle changes after back injury are characterized by structural remodeling of muscle, adipose and connective tissue, but not muscle atrophy: molecular and morphological evidence. Spine 40:1057–1071. https://doi.org/10.1097/BRS.0000000000000972

    Article  PubMed  Google Scholar 

  42. James G, Sluka KA, Blomster L et al (2018) Macrophage polarization contributes to local inflammation and structural change in the multifidus muscle after intervertebral disc injury. Eur Spine J 27:1744–1756. https://doi.org/10.1007/s00586-018-5652-7

    Article  PubMed  Google Scholar 

  43. James G, Chen X, Diwan A, Hodges PW (2020) Fat infiltration in the multifidus muscle is related to inflammatory cytokine expression in the muscle and epidural adipose tissue in individuals undergoing surgery for intervertebral disc herniation. Eur Spine J 30(4):837–845. https://doi.org/10.1007/s00586-020-06514-4

    Article  PubMed  Google Scholar 

  44. Shahidi B, Hubbard JC, Gibbons MC et al (2017) Lumbar multifidus muscle degenerates in individuals with chronic degenerative lumbar spine pathology. J Orthop Res 35:2700–2706. https://doi.org/10.1002/jor.23597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kuru S, Inukai A, Kato T et al (2003) Expression of tumor necrosis factor-alpha in regenerating muscle fibers in inflammatory and non-inflammatory myopathies. Acta Neuropathol 105:217–224. https://doi.org/10.1007/s00401-002-0635-4

    Article  CAS  PubMed  Google Scholar 

  46. Li YP, Schwartz RJ, Waddell ID et al (1998) Skeletal muscle myocytes undergo protein loss and reactive oxygen-mediated NF-kappaB activation in response to tumor necrosis factor alpha. FASEB J 12:871–880. https://doi.org/10.1096/fasebj.12.10.871

    Article  CAS  PubMed  Google Scholar 

  47. Li YP, Schwartz RJ (2001) TNF-alpha regulates early differentiation of C2C12 myoblasts in an autocrine fashion. FASEB J 15:1413–1415. https://doi.org/10.1096/fj.00-0632fje

    Article  CAS  PubMed  Google Scholar 

  48. Joshi SK, Liu X, Samagh SP et al (2013) mTOR regulates fatty infiltration through SREBP-1 and PPARγ after a combined massive rotator cuff tear and suprascapular nerve injury in rats. J Orthop Res 31:724–730. https://doi.org/10.1002/jor.22254

    Article  CAS  PubMed  Google Scholar 

  49. Schäfers M, Sorkin LS, Sommer C (2003) Intramuscular injection of tumor necrosis factor-alpha induces muscle hyperalgesia in rats. Pain 104:579–588. https://doi.org/10.1016/s0304-3959(03)00115-5

    Article  PubMed  Google Scholar 

  50. Shahidi B, Parra CL, Berry DB et al (2017) Contribution of lumbar spine pathology and age to paraspinal muscle size and fatty infiltration. Spine 42:616–623. https://doi.org/10.1097/BRS.0000000000001848

    Article  PubMed  PubMed Central  Google Scholar 

  51. Urrutia J, Besa P, Lobos D et al (2018) Lumbar paraspinal muscle fat infiltration is independently associated with sex, age, and inter-vertebral disc degeneration in symptomatic patients. Skeletal Radiol 47:955–961. https://doi.org/10.1007/s00256-018-2880-1

    Article  PubMed  Google Scholar 

  52. Kjaer P, Bendix T, Sorensen JS et al (2007) Are MRI-defined fat infiltrations in the multifidus muscles associated with low back pain? BMC Med 5:2. https://doi.org/10.1186/1741-7015-5-2

    Article  PubMed  PubMed Central  Google Scholar 

  53. Danneels L, Cagnie B, D’hooge R et al (2016) The effect of experimental low back pain on lumbar muscle activity in people with a history of clinical low back pain: a muscle functional MRI study. J Neurophysiol 115:851–857. https://doi.org/10.1152/jn.00192.2015

    Article  PubMed  Google Scholar 

  54. Battié MC, Niemelainen R, Gibbons LE, Dhillon S (2012) Is level- and side-specific multifidus asymmetry a marker for lumbar disc pathology? Spine J 12:932–939. https://doi.org/10.1016/j.spinee.2012.08.020

    Article  PubMed  Google Scholar 

  55. Deyo RA, Weinstein JN (2001) Low back pain. NEJM 344(5):363–370. https://doi.org/10.1056/NEJM200102013440508

    Article  CAS  PubMed  Google Scholar 

  56. Teichtahl AJ, Urquhart DM, Wang Y, et al. (2016) Lumbar disc degeneration is associated with modic change and high paraspinal fat content - a 3.0T magnetic resonance imaging study. BMC Musculoskelet Disord 17:439. doi: https://doi.org/10.1186/s12891-016-1297-z

  57. Hides JA, Richardson CA, Jull GA (1996) Multifidus muscle recovery is not automatic after resolution of acute, first-episode low back pain. Spine 21:2763–2769

    Article  CAS  Google Scholar 

  58. Danneels LA, Vanderstraeten GG, Cambier DC et al (2001) Effects of three different training modalities on the cross sectional area of the lumbar multifidus muscle in patients with chronic low back pain. Br J Sports Med 35:186–191. https://doi.org/10.1136/bjsm.35.3.186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim J, Gong W, Hwang B (2011) The effects of resistivity and stability-combined exercise for lumbar muscles on strength, cross- sectional area and balance ability: exercises for prevention of lower back pain. J Phys Ther Sci 23:247–250

    Article  Google Scholar 

  60. Shahtahmassebi B, Hebert JJ, Stomski NJ et al (2014) The effect of exercise training on lower trunk muscle morphology. Sports Med 44:1439–1458. https://doi.org/10.1007/s40279-014-0213-7

    Article  PubMed  Google Scholar 

  61. James G, Millecamps M, Stone LS, Hodges PW (2018) Dysregulation of the Inflammatory Mediators in the Multifidus Muscle After Spontaneous Intervertebral Disc Degeneration SPARC-null Mice is Ameliorated by Physical Activity. Spine 43:E1184–E1194. https://doi.org/10.1097/BRS.0000000000002656

    Article  PubMed  Google Scholar 

  62. James G, Klyne DM, Millecamps M et al (2019) ISSLS Prize in Basic science 2019: physical activity attenuates fibrotic alterations to the multifidus muscle associated with intervertebral disc degeneration. Eur Spine J 28:893–904. https://doi.org/10.1007/s00586-019-05902-9

    Article  CAS  PubMed  Google Scholar 

  63. Miller BF, Olesen JL, Hansen M et al (2005) Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise. J Physiol (Lond) 567:1021–1033. https://doi.org/10.1113/jphysiol.2005.093690

    Article  CAS  Google Scholar 

  64. Astrom M-B, Feigh M, Pedersen BK (2010) Persistent low-grade inflammation and regular exercise. Front Biosci (Schol Ed) 2:96–105. https://doi.org/10.2741/s48

    Article  Google Scholar 

  65. Gleeson M, Bishop NC, Stensel DJ et al (2011) The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol 11:607–615. https://doi.org/10.1038/nri3041

    Article  CAS  PubMed  Google Scholar 

  66. Mayer J, Mooney V, Dagenais S (2008) Evidence-informed management of chronic low back pain with lumbar extensor strengthening exercises. Spine J 8:96–113. https://doi.org/10.1016/j.spinee.2007.09.008

    Article  PubMed  Google Scholar 

  67. O’leary S, Jull G, Van Wyk L, et al (2015) Morphological changes in the cervical muscles of women with chronic whiplash can be modified with exercise-A pilot study. Muscle Nerve 52:772–779. https://doi.org/10.1002/mus.24612

    Article  Google Scholar 

  68. Crawford RJ, Filli L, Elliott JM et al (2016) Age- and level-dependence of fatty infiltration in lumbar paravertebral muscles of healthy volunteers. AJNR Am J Neuroradiol 37:742–748. https://doi.org/10.3174/ajnr.A4596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dahlqvist JR, Vissing CR, Hedermann G et al (2017) Fat replacement of paraspinal muscles with aging in healthy adults. Med Sci Sports Exerc 49:595–601. https://doi.org/10.1249/MSS.0000000000001119

    Article  PubMed  Google Scholar 

  70. Johannesdottir F, Allaire B, Anderson DE et al (2018) Population-based study of age- and sex-related differences in muscle density and size in thoracic and lumbar spine: the Framingham study. Osteoporos Int 29:1569–1580. https://doi.org/10.1007/s00198-018-4490-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fortin M, Videman T, Gibbons LE, Battié MC (2014) Paraspinal muscle morphology and composition: a 15-yr longitudinal magnetic resonance imaging study. Med Sci Sports Exerc 46:893–901. https://doi.org/10.1249/MSS.0000000000000179

    Article  CAS  PubMed  Google Scholar 

  72. Parkkola R, Kormano M (1992) Lumbar disc and back muscle degeneration on MRI: correlation to age and body mass. J Spinal Disord 5:86–92

    Article  CAS  Google Scholar 

  73. Prasarn ML, Kostantinos V, Coyne E et al (2015) Does lumbar paraspinal muscle fatty degeneration correlate with aerobic index and Oswestry disability index? Surg Neurol Int 6:S240–S243. https://doi.org/10.4103/2152-7806.156606

    Article  PubMed  PubMed Central  Google Scholar 

  74. Teichtahl AJ, Urquhart DM, Wang Y et al (2015) Physical inactivity is associated with narrower lumbar intervertebral discs, high fat content of paraspinal muscles and low back pain and disability. Arthritis Res Ther 17:114. https://doi.org/10.1186/s13075-015-0629-y

    Article  PubMed  PubMed Central  Google Scholar 

  75. Belavý DL, Armbrecht G, Richardson CA et al (2011) Muscle atrophy and changes in spinal morphology: is the lumbar spine vulnerable after prolonged bed-rest? Spine 36:137–145. https://doi.org/10.1097/BRS.0b013e3181cc93e8

    Article  PubMed  Google Scholar 

  76. Chang DG, Healey RM, Snyder AJ et al (2016) Lumbar spine paraspinal muscle and intervertebral disc height changes in astronauts after long-duration spaceflight on the international space station. Spine 41:1917–1924. https://doi.org/10.1097/BRS.0000000000001873

    Article  PubMed  PubMed Central  Google Scholar 

  77. Fortin M, Lazáry À, Varga PP et al (2016) Paraspinal muscle asymmetry and fat infiltration in patients with symptomatic disc herniation. Eur Spine J 25:1452–1459. https://doi.org/10.1007/s00586-016-4503-7

    Article  PubMed  Google Scholar 

  78. Abbas J, Slon V, May H et al (2016) Paraspinal muscles density: a marker for degenerative lumbar spinal stenosis? BMC Musculoskelet Disord 17:422. https://doi.org/10.1186/s12891-016-1282-6

    Article  PubMed  PubMed Central  Google Scholar 

  79. Fortin M, Lazáry À, Varga PP, Battié MC (2017) Association between paraspinal muscle morphology, clinical symptoms and functional status in patients with lumbar spinal stenosis. Eur Spine J 26:2543–2551. https://doi.org/10.1007/s00586-017-5228-y

    Article  PubMed  Google Scholar 

  80. Jiang J, Wang H, Wang L et al (2017) Multifidus degeneration, a new risk factor for lumbar spinal stenosis: a case-control study. World Neurosurg 99:226–231. https://doi.org/10.1016/j.wneu.2016.11.142

    Article  PubMed  Google Scholar 

  81. Kalichman L, Hodges P, Li L et al (2010) Changes in paraspinal muscles and their association with low back pain and spinal degeneration: CT study. Eur Spine J 19:1136–1144. https://doi.org/10.1007/s00586-009-1257-5

    Article  PubMed  Google Scholar 

  82. Yu B, Jiang K, Li X et al (2017) Correlation of the features of the lumbar multifidus muscle with facet joint osteoarthritis. Orthopedics 40:e793–e800. https://doi.org/10.3928/01477447-20170531-05

    Article  PubMed  Google Scholar 

  83. Danneels LA, Vanderstraeten GG, Cambier DC et al (2000) CT imaging of trunk muscles in chronic low back pain patients and healthy control subjects. Eur Spine J 9:266–272. https://doi.org/10.1007/s005860000190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hides J, Gilmore C, Stanton W, Bohlscheid E (2008) Multifidus size and symmetry among chronic LBP and healthy asymptomatic subjects. Man Ther 13:43–49. https://doi.org/10.1016/j.math.2006.07.017

    Article  PubMed  Google Scholar 

  85. Goubert D, De Pauw R, Meeus M et al (2017) Lumbar muscle structure and function in chronic versus recurrent low back pain: a cross-sectional study. Spine J 17:1285–1296. https://doi.org/10.1016/j.spinee.2017.04.025

    Article  PubMed  Google Scholar 

  86. Teichtahl AJ, Urquhart DM, Wang Y et al (2015) Fat infiltration of paraspinal muscles is associated with low back pain, disability, and structural abnormalities in community-based adults. Spine J 15:1593–1601. https://doi.org/10.1016/j.spinee.2015.03.039

    Article  PubMed  Google Scholar 

  87. Bailey JF, Fields AJ, Ballatori A et al (2019) The relationship between endplate pathology and patient-reported symptoms for chronic low back pain depends on lumbar paraspinal muscle quality. Spine 44:1010–1017. https://doi.org/10.1097/BRS.0000000000003035

    Article  PubMed  PubMed Central  Google Scholar 

  88. Brinjikji W, Luetmer PH, Comstock B et al (2015) Systematic literature review of imaging features of spinal degeneration in asymptomatic populations. AJNR Am J Neuroradiol 36:811–816. https://doi.org/10.3174/ajnr.A4173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Crawford RJ, Volken T, Valentin S et al (2016) Rate of lumbar paravertebral muscle fat infiltration versus spinal degeneration in asymptomatic populations: an age-aggregated cross-sectional simulation study. Scoliosis Spinal Disord 11:21. https://doi.org/10.1186/s13013-016-0080-0

    Article  PubMed  PubMed Central  Google Scholar 

  90. Suri P, Fry AL, Gellhorn AC (2015) Do muscle characteristics on lumbar spine magnetic resonance imaging or computed tomography predict future low back pain, physical function, or performance? a systematic review. PM R 7:1269–1281. https://doi.org/10.1016/j.pmrj.2015.04.016

    Article  PubMed  Google Scholar 

  91. Masaki M, Ikezoe T, Fukumoto Y et al (2016) Association of walking speed with sagittal spinal alignment, muscle thickness, and echo intensity of lumbar back muscles in middle-aged and elderly women. Aging Clin Exp Res 28:429–434. https://doi.org/10.1007/s40520-015-0442-0

    Article  PubMed  Google Scholar 

  92. Yoshiko A, Kaji T, Sugiyama H et al (2018) Muscle quality characteristics of muscles in the thigh, upper arm and lower back in elderly men and women. Eur J Appl Physiol 118:1385–1395. https://doi.org/10.1007/s00421-018-3870-7

    Article  PubMed  Google Scholar 

  93. Lee S, Chan CK, Lam T et al (2006) Relationship between low back pain and lumbar multifidus size at different postures. Spine 31:2258–2262. https://doi.org/10.1097/01.brs.0000232807.76033.33

    Article  PubMed  Google Scholar 

  94. Sweeney N, O’Sullivan C, Kelly G (2014) Multifidus muscle size and percentage thickness changes among patients with unilateral chronic low back pain (CLBP) and healthy controls in prone and standing. Man Ther 19:433–439. https://doi.org/10.1016/j.math.2014.04.009

    Article  PubMed  Google Scholar 

  95. Stokes M, Rankin G, Newham DJ (2005) Ultrasound imaging of lumbar multifidus muscle: normal reference ranges for measurements and practical guidance on the technique. Man Ther 10:116–126. https://doi.org/10.1016/j.math.2004.08.013

    Article  CAS  PubMed  Google Scholar 

  96. Pressler JF, Heiss DG, Buford JA, Chidley JV (2006) Between-day repeatability and symmetry of multifidus cross-sectional area measured using ultrasound imaging. J Orthop Sports Phys Ther 36:10–18. https://doi.org/10.2519/jospt.2006.36.1.10

    Article  PubMed  Google Scholar 

  97. Cuellar WA, Blizzard L, Callisaya ML et al (2017) Test-retest reliability of measurements of abdominal and multifidus muscles using ultrasound imaging in adults aged 50–79 years. Musculoskelet Sci Pract 28:79–84. https://doi.org/10.1016/j.msksp.2016.11.013

    Article  CAS  PubMed  Google Scholar 

  98. Wilson A, Hides JA, Blizzard L et al (2016) Measuring ultrasound images of abdominal and lumbar multifidus muscles in older adults: A reliability study. Man Ther 23:114–119. https://doi.org/10.1016/j.math.2016.01.004

    Article  PubMed  Google Scholar 

  99. Kalichman L, Klindukhov A, Li L, Linov L (2016) Indices of paraspinal muscles degeneration: reliability and association with facet joint osteoarthritis: feasibility study. Clin Spine Surg 29(9):465–470

    Article  Google Scholar 

  100. Hu Z-J, He J, Zhao F-D et al (2011) An assessment of the intra- and inter-reliability of the lumbar paraspinal muscle parameters using CT scan and magnetic resonance imaging. Spine 36:E868–E874. https://doi.org/10.1097/BRS.0b013e3181ef6b51

    Article  PubMed  Google Scholar 

  101. Fortin M, Battié MC (2012) Quantitative paraspinal muscle measurements: inter-software reliability and agreement using OsiriX and ImageJ. Phys Ther 92:853–864. https://doi.org/10.2522/ptj.20110380

    Article  Google Scholar 

  102. Sasaki T, Yoshimura N, Hashizume H et al (2017) MRI-defined paraspinal muscle morphology in Japanese population: the Wakayama Spine study. PLoS ONE 12:e0187765. https://doi.org/10.1371/journal.pone.0187765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Paalanne N, Niinimäki J, Karppinen J et al (2011) Assessment of association between low back pain and paraspinal muscle atrophy using opposed-phase magnetic resonance imaging: a population-based study among young adults. Spine 36:1961–1968. https://doi.org/10.1097/BRS.0b013e3181fef890

    Article  PubMed  Google Scholar 

  104. Ranson CA, Burnett AF, Kerslake R et al (2006) An investigation into the use of MR imaging to determine the functional cross sectional area of lumbar paraspinal muscles. Eur Spine J 15:764–773. https://doi.org/10.1007/s00586-005-0909-3

    Article  PubMed  Google Scholar 

  105. **ao Y, Fortin M, Battié MC, Rivaz H (2018) Population-averaged MRI atlases for automated image processing and assessments of lumbar paraspinal muscles. Eur Spine J 27:2442–2448. https://doi.org/10.1007/s00586-018-5704-z

    Article  PubMed  Google Scholar 

  106. Mengiardi B, Schmid MR, Boos N et al (2006) Fat content of lumbar paraspinal muscles in patients with chronic low back pain and in asymptomatic volunteers: quantification with MR spectroscopy. Radiol 240:786–792. https://doi.org/10.1148/radiol.2403050820

    Article  Google Scholar 

  107. Fischer MA, Nanz D, Shimakawa A et al (2013) Quantification of muscle fat in patients with low back pain: comparison of multi-echo MR imaging with single-voxel MR spectroscopy. Radiol 266:555–563. https://doi.org/10.1148/radiol.12120399

    Article  Google Scholar 

  108. Hides JA, Richardson CA, Jull GA (1995) Magnetic resonance imaging and ultrasonography of the lumbar multifidus muscle. Comparison of two different modalities Spine 20(1):54–58. https://doi.org/10.1097/00007632-199501000-00010

    Article  CAS  PubMed  Google Scholar 

  109. Belavý DL, Armbrecht G, Felsenberg D (2015) Real-time ultrasound measures of lumbar erector spinae and multifidus: reliability and comparison to magnetic resonance imaging. Physiol Meas 36:2285–2299. https://doi.org/10.1088/0967-3334/36/11/2285

    Article  PubMed  Google Scholar 

  110. Kader DF, Wardlaw D, Smith FW (2000) Correlation between the MRI changes in the lumbar multifidus muscles and leg pain. Clin Radiol 55:145–149. https://doi.org/10.1053/crad.1999.0340

    Article  CAS  PubMed  Google Scholar 

  111. Ropponen A, Videman T, Battié MC (2008) The reliability of paraspinal muscles composition measurements using routine spine MRI and their association with back function. Man Ther 13:349–356. https://doi.org/10.1016/j.math.2007.03.004

    Article  PubMed  Google Scholar 

  112. Battaglia PJ, Maeda Y, Welk A et al (2014) Reliability of the Goutallier classification in quantifying muscle fatty degeneration in the lumbar multifidus using magnetic resonance imaging. J Manipulative Physiol Ther 37:190–197. https://doi.org/10.1016/j.jmpt.2013.12.010

    Article  PubMed  Google Scholar 

  113. Bhadresha A, Lawrence OJ, McCarthy MJH (2016) A comparison of magnetic resonance imaging muscle fat content in the lumbar paraspinal muscles with patient-reported outcome measures in patients with lumbar degenerative disk disease and focal disk prolapse. Global Spine J 6:401–410. https://doi.org/10.1055/s-0036-1583290

    Article  PubMed  PubMed Central  Google Scholar 

  114. Yoo YH, Kim H-S, Lee YH et al (2015) Comparison of multi-echo dixon methods with volume interpolated breath-hold gradient echo magnetic resonance imaging in fat-signal fraction quantification of paravertebral muscle. Korean J Radiol 16:1086–1095. https://doi.org/10.3348/kjr.2015.16.5.1086

    Article  PubMed  PubMed Central  Google Scholar 

  115. Reeder SB, Hu HH, Sirlin CB (2012) Proton density fat-fraction: a standardized mr-based biomarker of tissue fat concentration. J Magn Reson Imaging 36:1011–1014. https://doi.org/10.1002/jmri.23741

    Article  PubMed  PubMed Central  Google Scholar 

  116. Hebert JJ, Kjaer P, Fritz JM, Walker BF (2014) The relationship of lumbar multifidus muscle morphology to previous, current, and future low back pain: a 9-year population-based prospective cohort study. Spine 39:1417–1425. https://doi.org/10.1097/BRS.0000000000000424

    Article  PubMed  Google Scholar 

  117. Fortin M, Gibbons LE, Videman T, Battié MC (2015) Do variations in paraspinal muscle morphology and composition predict low back pain in men? Scand J Med Sci Sports 25:880–887. https://doi.org/10.1111/sms.12301

    Article  CAS  PubMed  Google Scholar 

  118. Mhuiris ÁN, Volken T, Elliott JM et al (2016) Reliability of quantifying the spatial distribution of fatty infiltration in lumbar paravertebral muscles using a new segmentation method for T1-weighted MRI. BMC Musculoskelet Disord 17:234. https://doi.org/10.1186/s12891-016-1090-z

    Article  PubMed  PubMed Central  Google Scholar 

  119. Gaeta M, Scribano E, Mileto A et al (2011) Muscle fat fraction in neuromuscular disorders: dual-echo dual-flip-angle spoiled gradient-recalled MR imaging technique for quantification–a feasibility study. Radiology 259:487–494. https://doi.org/10.1148/radiol.10101108

    Article  PubMed  Google Scholar 

  120. Crawford RJ, Cornwall J, Abbott R, Elliott JM (2017) Manually defining regions of interest when quantifying paravertebral muscles fatty infiltration from axial magnetic resonance imaging: a proposed method for the lumbar spine with anatomical cross-reference. BMC Musculoskelet Disord 18:25. https://doi.org/10.1186/s12891-016-1378-z

    Article  PubMed  PubMed Central  Google Scholar 

  121. Pezolato A, de Vasconcelos EE, Defino HLA, Nogueira-Barbosa MH (2012) Fat infiltration in the lumbar multifidus and erector spinae muscles in subjects with sway-back posture. Eur Spine J 21:2158–2164. https://doi.org/10.1007/s00586-012-2286-z

    Article  PubMed  PubMed Central  Google Scholar 

  122. D’hooge R, Cagnie B, Crombez G et al (2012) Increased intramuscular fatty infiltration without differences in lumbar muscle cross-sectional area during remission of unilateral recurrent low back pain. Man Ther 17:584–588. https://doi.org/10.1016/j.math.2012.06.007

    Article  PubMed  Google Scholar 

  123. Berry DB, Padwal J, Johnson S et al (2018) Methodological considerations in region of interest definitions for paraspinal muscles in axial MRIs of the lumbar spine. BMC Musculoskelet Disord 19:135. https://doi.org/10.1186/s12891-018-2059-x

    Article  PubMed  PubMed Central  Google Scholar 

  124. Gibbons MC, Singh A, Anakwenze O et al (2017) Histological evidence of muscle degeneration in advanced human rotator cuff disease. J Bone Joint Surg Am 99:190–199. https://doi.org/10.2106/JBJS.16.00335

    Article  PubMed  PubMed Central  Google Scholar 

  125. Valentin S, Yeates TD, Licka T, Elliott J (2015) Inter-rater reliability of trunk muscle morphometric analysis. J Back Musculoskelet Rehabil 28:181–190. https://doi.org/10.3233/BMR-140552

    Article  PubMed  PubMed Central  Google Scholar 

  126. Valentin S, Licka T, Elliott J (2015) Age and side-related morphometric MRI evaluation of trunk muscles in people without back pain. Man Ther 20:90–95. https://doi.org/10.1016/j.math.2014.07.007

    Article  PubMed  Google Scholar 

  127. Kazemifar S, Drozd JJ, Rajakumar N et al (2014) Automated algorithm to measure changes in medial temporal lobe volume in Alzheimer disease. J Neurosci Methods 227:35–46. https://doi.org/10.1016/j.jneumeth.2014.01.033

    Article  PubMed  Google Scholar 

  128. Mikheev A, Nevsky G, Govindan S et al (2008) Fully automatic segmentation of the brain from T1-weighted MRI using bridge burner algorithm. J Magn Reson Imaging 27:1235–1241. https://doi.org/10.1002/jmri.21372

    Article  PubMed  Google Scholar 

  129. Shahzad R, Bos D, Budde RPJ et al (2017) Automatic segmentation and quantification of the cardiac structures from non-contrast-enhanced cardiac CT scans. Phys Med Biol 62:3798–3813. https://doi.org/10.1088/1361-6560/aa63cb

    Article  PubMed  Google Scholar 

  130. Depa M, Sabuncu MR, Holmvang G et al (2010) Robust atlas-based segmentation of highly variable anatomy: left atrium segmentation. Stat Atlases Comput Models Heart 6364:85–94. https://doi.org/10.1007/978-3-642-15835-3_9

    Article  PubMed  PubMed Central  Google Scholar 

  131. Creze M, Soubeyrand M, Yue JL et al (2018) Magnetic resonance elastography of the lumbar back muscles: a preliminary study. Clin Anat 31:514–520. https://doi.org/10.1002/ca.23065

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Degenerative Spinal Phenotypes Group of the International Society for the Study of the Lumbar Spine (ISSLS) and was ratified by the Group after the 2021 ISSLS Annual Meeting. We thank Drs Dino Samartzis, Pradeep Suri, and Jeffrey Jarvik for detailed review of the manuscript.

Funding

PH is supported by a Fellowship from the National Health and Medical Research Council of Australia (APP1194937).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to conceptualisation of the paper and preparation of the manuscript. All authors approved the final version.

Corresponding author

Correspondence to Paul W. Hodges.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 kb)

Supplementary file2 (PDF 442 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hodges, P.W., Bailey, J.F., Fortin, M. et al. Paraspinal muscle imaging measurements for common spinal disorders: review and consensus-based recommendations from the ISSLS degenerative spinal phenotypes group. Eur Spine J 30, 3428–3441 (2021). https://doi.org/10.1007/s00586-021-06990-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-021-06990-2

Keywords

Navigation