Log in

Morphine enhances tissue content of collagen and increases wound tensile strength

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

Morphine is a commonly prescribed analgesic for wound pain. Previous studies have shown that morphine enhances accumulation of collagen in cultured fibroblasts. Because fibroblasts are important for the remodeling of connective tissue in incisional wound, this study investigates the biological effects of morphine on cutaneous collagen content and wound tensile strength.

Methods

A full-thickness incisional wound (2 cm in length) was created on the dorsum of mice followed by treatment with placebo or morphine (5 and 20 mg/kg/day, i.p.). Fourteen days later, tensile strength of the healed incisional wound was measured using a tensiometer. Protein expression of transforming growth factor (TGF)-β1 and matrix metalloproteinases (MMP)-2 in the incisional wound tissue was analyzed. Degree of tissue remodeling and levels of collagen were determined by histological examination and a dye-binding collagen assay, respectively.

Results

Morphine enhanced the breaking strength of incisional wound 14 days after treatment (92 ± 10, 102 ± 10 and 134 ± 12 mg for control, morphine 5 mg/kg/day and morphine 20 mg/kg/day, respectively; P = 0.03, n = 6–7). Protein expression of TGF-β1 and MMP-2 was significantly enhanced in mice treated with morphine. Histological examination of the wound tissue showed evidence of increased thickness of the cutaneous fibrous layer and deposition of collagen in the high-dose morphine treatment group. Collagen assays also demonstrated that tissue concentrations of collagen were significantly increased in the wound tissue of morphine-treated animals on day 2 of drug treatment.

Conclusion

The present study demonstrates that systemic administration of morphine enhances tissue collagen deposition in the cutaneous tissue, thereby increasing the tensile strength of the incisional wound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bao P, Kodra A, Tomic-Canic M, Golinko MS, Ehrlich HP, Brem H. The role of vascular endothelial growth factor in wound healing. J Surg Res. 2009;153:347–58.

    Article  CAS  PubMed  Google Scholar 

  2. Quaglino D Jr, Nanney LB, Ditesheim JA, Davidson JM. Transforming growth factor-beta stimulates wound healing and modulates extracellular matrix gene expression in pig skin: incisional wound model. J Invest Dermatol. 1991;97:34–42.

    CAS  PubMed  Google Scholar 

  3. Kinge U, Binnebosel M, Mertens PR. Are collagens the culprits in the development of incisional and inguinal hernia disease? Hernia. 2006;10:472–7.

    Article  Google Scholar 

  4. Lam CF, Chang PJ, Huang YS, Sung YH, Huang CC, Lin MW, et al. Prolonged use of high-dose morphine impairs angiogenesis and mobilization of endothelial progenitor cells in mice. Anesth Analg. 2008;107:686–92.

    Article  CAS  PubMed  Google Scholar 

  5. Dettmeyer RB, Preuss J, Wollersen H, Madea B. Heroin-associated nephropathy. Expert Opin Drug Saf. 2005;4:19–28.

    Article  CAS  PubMed  Google Scholar 

  6. Gottlieb LS, Boylen TC. Pulmonary complications of drug abuse. West J Med. 1974;120:8–16.

    CAS  PubMed  Google Scholar 

  7. Singhal PC, Sharma P, Sanwal V, Prasad A, Kapasi A, Ranjan R, et al. Morphine modulates proliferation of kidney fibroblasts. Kidney Int. 1998;53:350–7.

    Article  CAS  PubMed  Google Scholar 

  8. Singhal PC, Sharma P, Gibbsons N, Franki N, Kapasi A, Wagner JD. Effect of morphine on renomedullary interstitial cell proliferation and matrix accumulation. Nephron. 1997;77:225–34.

    Article  CAS  PubMed  Google Scholar 

  9. Singhal PC, Gibbons N, Abramovici M. Long term effects of morphine on mesangial cell proliferation and matrix synthesis. Kidney Int. 1992;41:1560–70.

    Article  CAS  PubMed  Google Scholar 

  10. Tsai YC, Won SJ, Lin MT. Effects of morphine on immune response in rats with sciatic constriction injury. Pain. 2000;88:155–60.

    Article  CAS  PubMed  Google Scholar 

  11. Lam CF, Liu YC, Tseng FL, Sung YH, Huang CC, Jiang MJ, et al. High-dose morphine impairs vascular endothelial function by increased production of superoxide anions. Anesthesiology. 2007;106:532–7.

    Article  CAS  PubMed  Google Scholar 

  12. Pacifici R, Patrini G, Venier I, Parolaro D, Zuccaro P, Gori E. Effect of morphine and methadone acute treatment on immunological activity in mice: pharmacokinetic and pharmacodynamic correlates. J Pharmacol Exp Ther. 1994;269:1112–6.

    CAS  PubMed  Google Scholar 

  13. Pacifici R, di Carlo S, Bacosi A, Pichini S, Zuccaro P. Pharmacokinetics and cytokine production in heroin and morphine-treated mice. Int J Immunopharmacol. 2000;22:603–14.

    Article  CAS  PubMed  Google Scholar 

  14. Miyamoto Y, Morita N, Nakamura N, Yamanishi T, Kishioka S, Yamamoto H. Effect of naloxone on the morphine concentration in the central nervous system and plasma in rats. Jpn J Pharmacol. 1993;63:235–40.

    Article  CAS  PubMed  Google Scholar 

  15. Lam CF, Croatt AJ, Richardson D, Nath KA, Katusic ZS. Heart failure increases protein expression and enzymatic activity of heme oxygenase-1 in the lung. Cardiovasc Res. 2005;65:203–10.

    Article  CAS  PubMed  Google Scholar 

  16. Li YY, Feng Y, McTiernan CF, Pei W, Moravac CS, Wang P, et al. Downregulation of matrix metalloproteinases and reduction in collagen damage in the failing human heart after support with left ventricular assist devices. Circulation. 2001;104:1147–52.

    Article  CAS  PubMed  Google Scholar 

  17. Sullivan JC, Kakati DD, Carter E, Boyd AK, Kyriakides TR, Agah Z. Elevated expression of isopeptide bond cross-links contributes to fibrosis in scleroderma and the healing wounds of tight skin mice. Wound Repair Regen. 2008;16:699–705.

    Article  PubMed  Google Scholar 

  18. Blewett CJ, Cilley RE, Ehrlich P, Blackburn JH, Dillon PW, Krummel TM. Regenerative healing of incisional wounds in midgestational murine hearts in organ culture. J Thorac Cardiovasc Surg. 1997;113:880–5.

    Article  CAS  PubMed  Google Scholar 

  19. Baum CL, Arpey CJ. Normal cutaneous wound healing: clinical correlation with cellular and molecular events. Dermatol Surg. 2005;31:674–86.

    Article  CAS  PubMed  Google Scholar 

  20. Charles D, Williams K, Perry LC, Fisher J, Rees RS. An improved method of in vivo wound disruption and measurement. J Surg Res. 1992;52:214–8.

    Article  CAS  PubMed  Google Scholar 

  21. Scott PG, Chambers M, Johnson BW, Williams HT. Experimental wound healing: increased breaking strength and collagen synthesis activity in abdominal fascial wounds healing with secondary closure of the skin. Br J Surg. 1985;72:777–9.

    Article  CAS  PubMed  Google Scholar 

  22. Franz MG, Kuhn MA, Wright TE, Wachtel TL, Robson MC. Use of the wound healing trajectory as an outcome determinant for acute wound healing. Wound Repair Regen. 2000;8:511–6.

    Article  CAS  PubMed  Google Scholar 

  23. Wong CL, Bentley GA. The effects of cholinergic compounds on the development of morphine tolerance, dependence and increased naloxone potency in mice. Eur J Pharmacol. 1980;61:99–109.

    Article  CAS  PubMed  Google Scholar 

  24. Girardot MN, Holloway FA. Chronic stress, aging and morphine analgesia: chronic stress affects the reactivity to morphine in young mature but not old rats. J Pharmacol Exp Ther. 1985;233:545–53.

    CAS  PubMed  Google Scholar 

  25. Metz CN. Fibrocytes: a unique cell population implicated in wound healing. Cell Mol Life Sci. 2003;60:1342–50.

    Article  CAS  PubMed  Google Scholar 

  26. Occleston NL, Daniels JT, Khaw DT. Wound healing: laboratory investigation and modulating agents. In: Hunt BJ, Ponston L, Schachter M, Halliday AW, editors. Introduction to vascular biology: from basic science to clinical practice. New York: Cambridge University Press; 2002. p. 129–66.

    Chapter  Google Scholar 

  27. Diegelmann RF, Evans MC. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci. 2004;9:283–9.

    Article  CAS  PubMed  Google Scholar 

  28. Chin D, Boyle GM, Parsons PG, Coman WB. What is transforming growth factor-beta? Br J Plastic Surg. 2004;57:215–21.

    Article  Google Scholar 

  29. O’Kane S, Ferguson MWJ. Transforming growth factors and wound healing. Int J Biochem Cell Biol. 1997;29:63–78.

    Article  PubMed  Google Scholar 

  30. Gill SE, Parks WC. Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem Cell Biol. 2007;40:1334–47.

    Article  PubMed  CAS  Google Scholar 

  31. Salo T, Makela M, Kylmaniemi M, Autio-Harmainen H, Larjava H. Expression of matrix metalloproteinase-2 and -9 during early human wound healing. Lab Invest. 1994;70:176–82.

    CAS  PubMed  Google Scholar 

  32. Karim RB, Brito BL, Dutrieux RP, Lassance FP, Hage JJ. MMP-2 assessment as an indicator of wound healing: a feasibility study. Adv Skin Wound Care. 2006;19:324–7.

    Article  PubMed  Google Scholar 

  33. Balasubramanian S, Ramakrishnan S, Charboneau R, Wang J, Barke R, Roy S. Morphine sulfate inhibits hypoxia-induced vascular endothelial growth factor expression in endothelial cells and cardiac myocytes. J Mol Cell Cardiol. 2001;33:2179–87.

    Article  CAS  PubMed  Google Scholar 

  34. Niessen FB, Spauwen PH, Schalkwijk J, Kon M. On the nature of hypertrophic scars and keloids. Plast Reconstr Surg. 1999;104:1435–58.

    Article  CAS  PubMed  Google Scholar 

  35. Cheng B, Liu HW, Fu XB, Shen ZY, Li JF. Coexistence and upregulation of three types of opioid receptors, mu, delta and kappa, in human hypertrophic scars. Br J Dermatol. 2008;158:713–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a research grant from the National Science Council, Taiwan (NSC-94-2314-B-006-046 to Professor Tsai).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Chuan Tsai.

About this article

Cite this article

Chang, PJ., Chen, MY., Huang, YS. et al. Morphine enhances tissue content of collagen and increases wound tensile strength. J Anesth 24, 240–246 (2010). https://doi.org/10.1007/s00540-009-0845-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-009-0845-1

Keywords

Navigation