Log in

The Waqf as Suwwan crater, Eastern Desert of Jordan: aspects of the deep structure of an oblique impact from reflection seismic and gravity data

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The deeply eroded Waqf as Suwwan ring structure was recently discovered to be a large impact, the first identified in the near east. Large-scale reflection seismic structure shows the impact situated high on the northeastern flank of the Jordan Uplift slo** into Wadi Sirhan Basin. If exhumation is linked to the Arabia–Eurasia collision, a likely time window for the impact event may be latest Eocene to Late Oligocene. Impact into a shallow sea seems an optional scenario. Old reflection seismic lines offer limited insight into the deep structure of the rim and part of the central uplift of the complex crater. An important structural clue is provided by a well-resolved seismic horizon of a yet tentative correlation with a Paleozoic black shale. The central gravity high is compatible with a mass surplus by the uplift of denser Paleozoic basement below the central uplift. The gravity model further indicates a ring of dense Paleozoic sediments rising from below into the ring syncline. Seismics show presumably radial synclines in the central uplift which are interpreted by centripetal constrictional flow during crater collapse. Beneath the final crater’s outer boundary, a shallow-dip normal fault zone, subtle seismic structure in uncollapsed footwall segments reveal an asymmetry of strain. The asymmetry is attributed to the cratering flow by an oblique impact directed toward NE. The finding provides independent support to an earlier suggestion of impact obliquity based on vergency of folds exposed on the central uplift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abu Saad L, Andrews IJ, (1993) A database of stratigraphic information from deep boreholes in Jordan. Geology Directorate, Natural Resources Authority, Amman, Subsurface Geol Bull 6: 182

  • Abul Khair HF, Abed AM, Amireh BS (2008) Hydrocarbon prospectivity of Al-Sirhan Basin, Southeast Jordan. Dirasat Pure Sci 35(2):161–174

    Google Scholar 

  • Al-Zoubi A, Heinrichs T, Qabbani I, ten Brink U (2007) The northern end of the dead Sea basin: geometry from reflection seismic evidence. Tectonophysics 434(2007):55–69

    Article  Google Scholar 

  • Amireh BS, Abed AM (1999) Depositional environments of the Kurnub Group (early cretaceous) in northern Jordan. J Afr Earth Sci 29:449–468

    Article  Google Scholar 

  • Andrews IJ (1991) Paleozoic lithostratigraphy in the subsurface of Jordan. Geology Directorate, Natural Resources Authority, Amman, Subsurface Geol Bull 2: 75

  • Andrews IJ (1992) Cretaceous and Paleogene lithostratigraphy in the subsurface of Jordan. Geology Directorate, Natural Resources Authority, Amman, Subsurface Geol Bull 5: 60

  • Baldwin B, Butler CO (1985) Compaction curves. AAPG Bull 69:622–626

    Google Scholar 

  • Bender F (1968) Geologie von Jordanien. Beiträge Regionale Geologie der Erde Bd.7. Bornträger, Berlin, p 230

  • Bender F, Deutsche Geologische Mission in Jordanien (1968) Sheet Bayir, geological map of Jordan 1:250,000, Hannover

  • Capetta H, Pfeil F, Schmidt-Kittler N (2000) New biostratigraphical data on the marine upper Cretaceous and Paleogene of Jordan. Newsl Stratigr 38:81–95

    Google Scholar 

  • Collins GS, Melosh HJ, Marcus RA (2005) Earth impact effects program: a web-base computer program for calculating the regional environmental consequences of a meteoroid impact on earth. Meteorit Planet Sci 40:817–840

    Article  Google Scholar 

  • Costain JK, Coruh C (2004) Basic theory in exploration seismology. Elsevier, Amsterdam, p 571

    Google Scholar 

  • DEKORP Research Group, Bortfeld RK, Stiller M, Baier B, Behr HJ, Heinrichs T, Dürbaum HJ, Hahn A, Reichert C, Schmoll J, Dohr G, Meissner R, Bittner B, Milkereit B, Gebrande H (1985) First results and preliminary interpretation of deep-reflection seismic recordings along profile DEKORP 2-South. J Geophys 57:137–16

    Google Scholar 

  • Dercourt J, Zonenshain LP, Ricous L-E, Kazmin VG, LePichon X et al (1986) Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the Lias. Tectonophysics 123:241–315

    Article  Google Scholar 

  • Flexer A, Yellin-Dror A (2009) 2.1 Geology. In: Hötzl H, Möller P, Rosenthal E (eds) The water of the Jordan valley. Springer, Berlin, pp 15–54

    Chapter  Google Scholar 

  • Gardner GHF, Gardner LW, Gregory AR (1974) Formation velocity and density: the diagnostic basics for stratigraphic traps. Geophysics 39:770–780

    Article  Google Scholar 

  • Gault DE, Wedekind JA (1978) Experimental studies of oblique impacts. Proc Lunar Planet Sci Conf 9:3843–3875

    Google Scholar 

  • Gharaibeh A, Khataibeh JR (2009) Geological and geophysical study of Waqf ess Suwwan area, East central Jordan. 1st Arab impact cratering and astrogeology Conference—Abst vol, Jordan University Press, Amman, p 23

  • Götze HJ, El-Kelani R, Schmidt S, Rybakov M, Hassouneh M, Förster HJ, Ebbing J (2007) Integrated 3D density modelling and segmentation of the Dead Sea transform. Int J Earth Sci (Geol Rundsch) 96:289–302

    Article  Google Scholar 

  • Grieve RAF, Pesonen LF (1992) The terrestrial impact cratering record. Tectonophysics 216:1–30

    Article  Google Scholar 

  • Grieve RAF, Therriault AM (2004) Observations at terrestrial impact structures: their utility in constraining crater formation. Meteorit Planet Sci 39:199–216

    Article  Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1988) Mesozoic and cenozoic chronostratigraphy and cycles of sea level changes. SEPM Spec Publ 42:71–108

    Google Scholar 

  • Hassouneh M (2003) Interpretation of potential fields by modern data processing and 3-dimensional gravity modelling of the Dead Sea pull-apart basin/Jordan rift valley (JRV). Ph.D. Dissertation, Uni Wuerzburg, p 110

  • Heimbach W (1969) Vulkanogene Erscheinungen in der Kalktafel Zentraljordaniens. Geol Jahrbuch Beiheft 81:149–160

    Google Scholar 

  • Heimbach W (1970) Thulaythuwat. Geol map of Jordan 1:100.000, BGR (Federal Inst Geosci), Hannover

  • Heinrichs T, Al-Zoubi A, Sauter M, Salameh E, Qabbani I (2004) Structure of the Shuna (Eastern Jericho) Basin, Lower Jordan Valley—interpretation of reflection seismic data, preliminary results. In: Chatzipetros AA, Pavlides SB (eds) 5th International Symposium Eastern Mediterranian Geology, Thessaloniki, Proceedings vol 3, pp 1522–1525

  • Henkel H, Reimold WU (1998) Integrated geophysical modelling of a giant, complex impact structure: anatomy of the Vredefort structure, South Africa. Tectonophysics 287:1–20

    Article  Google Scholar 

  • Hirsch F (2005) Chapter 18 H, The oligocene-pliocene of Israel. In: Hall JK, Krasheninnikov VA, Hirsch F, Benjamini C, Flexer A (eds) Geological framework of the levant, vol II: the Levantine Basin and Israel. Historical Productions-Hall, Jerusalem, pp 459–488

    Google Scholar 

  • Hobler M, Margane A, Al-Momany M (1994) Structural features of the main hydrogeological units in northern Jordan. BGR-WAJ Technical cooperation project, groundwater resources of Northern Jordan—vol 3, p X + 57, 41 maps, BGR (Fed Inst Geosci), Hannover

  • Horowitz A (2001) The Jordan rift valley. A A Balkema publishers, Lisse, p 730

    Book  Google Scholar 

  • Ibrahim KM, Rabba I, Tarawneh K (2001) Geological and mineral occurrences map of the Northern Badia Region, Jordan. Geological Map** Div, Geology Directorate, Natural Resources Authority, Amman

  • Jarrar G, Wachendorf H, Zellmer H (1991) The Saramuj conglomerate: evolution of a Pan-African molasse sequence from southwest Jordan. Neues Jb Geol Paläont Monatsh 6:335–356

    Google Scholar 

  • Jolivet L, Faccenna C (2000) Mediterranean extension and the Africa-Eurasia collision. Tectonics 19:1095–1106

    Article  Google Scholar 

  • Kenkmann T (2000) Folding within seconds. Geology 30:231–234

    Article  Google Scholar 

  • Kenkmann T, von Dalwigk I (2000) Radial transpressive ridges: a new structural feature of complex impact craters. Meteorit Planet Sci 35:1189–1201

    Article  Google Scholar 

  • Kenkmann T, Khirfan M, Reimold WU, Salameh E, Konsul K, Khoury H (2009) The structure of the Jebel Waqf as Suwwan impact crater, Jordan, as revealed from field analysis, remote sensing map**, and interpretation of geophysical data. 1st Arab impact cratering and astrogeology Conference—Abst Vol, Jordan University Press, Amman, pp 32–37

  • Kenkmann T, Reimold WU, Khirfan M, Salameh E, Konsul K, Khoury H (2010) The complex impact crater Jebel Waqf as Suwwan in Jordan: Effects of target heterogeneity and impact obliquity on central uplift formation. In: Reimold WU, Gibson RL (eds) Large meteorite impacts and planetary evolution IV. GSA Spec Paper 465:471–487

  • Khirfan M, Crosta AP, Kenkmann T, Salameh E, Reimold WU (2009) Remote sensing analysis of Jabal Waqf as Suwwan meteorite impact. 1st Arab impact cratering and astrogeology Conference—Abst Vol, Jordan University Press, Amman, pp 38–41

  • Khouri J (1982) Hydrogeology of the Syrian steppe and adjoining arid areas. Q J eng Geol Lond 15:135–154

    Article  Google Scholar 

  • Konert G, Afifi AM, Al-Hajri SA, de Groot K, Al Naim AA, Droste HJ (2000) Paleozoic stratigraphy and hydrocarbon habitat of the Arabian plate. Pratt II Conference “Petroleum Provinces of the 21st Century” San Diego, California, AAPG, 27 p 27, figs

  • Kopf M (1980) Anwendung der Dichte-Vp-Korrelation bei der Ermittlung von Dichte- und Geschwindigkeitswerten für Gravimetrie und Seismik. Z geol Wiss Berlin 8:449–465

    Google Scholar 

  • Krasheninnikov VA (2005) Chapter 6, Stratigraphy and lithology of the sedimentary cover. In: Hall JK, Krasheninnikov VA, Hirsch F, Benjamini C, Flexer A (eds) Geological framework of the levant, vol I: Cyprus and Syria. Historical Productions-Hall, Jerusalem, Israel, pp 181–416

  • Ludwig WJ, Nafe JE, Drake CL (1970) Seismic refraction. In: Maxwell AE (ed) The Sea, vol 4. Wiley-Interscience, New York, pp 53–84

    Google Scholar 

  • Lüning S, Craig J, Loydell DK, Storch P, Fitches WR (2000) Lowermost Silurian “hot shales” in North Africa and Arabia: regional distribution and depositional model. Earth Sci Rev 49:121–200

    Article  Google Scholar 

  • Lüning S, Shahim YM, Loydell DK, Al-Rabi HT, Masri A, Tarawneh B, Kolonic S (2005) Anatomy of a world class source rock: distribution and depositional model of Silurian organic-rich shales in Jordan and implications for hydrocarbon potential. AAPG Bull 89:1397–1427

    Article  Google Scholar 

  • Mazur MJ, Hildebrand AR, Hladiuk D, Schafer A, Pilkington M, Stewart RR (2002) The Steen River crater seismic refraction project. In: 33rd Lunar and Planet Sci Conf (2002), abstract 1736, p 2

  • Melosh HJ (1989) Impact cratering: a geologic process. Oxford University Press, New York, p 245

    Google Scholar 

  • Melosh HJ, Ivanov BA (1999) Impact crater collapse. Ann Rev Earth Planet Sci 27:385–415

    Article  Google Scholar 

  • Meyer BL, Nederlof MH (1984) Identification of source rocks on wireline logs by density/resistivity and sonic transit time/resistivity crossplots. AAPG Bull 68:121–129

    Google Scholar 

  • Oliveros RB (1989) Correcting 2-D seismic misties. Geobyte 4:43–47

    Google Scholar 

  • Passey QR, Creaney S, Kulla JB, Moretti FJ, Stroud JD (1990) A practical model of organic richness from porosity and resistivity logs. AAPG Bull 74:1777–1794

    Google Scholar 

  • Pierazzo E, Melosh HJ (2000) Understanding oblique impacts from experiments, observations, and modeling. Ann Rev Earth Planet Sci 28:141–167

    Article  Google Scholar 

  • Pilkington M, Grieve RAF (1992) The geophysical signature of terrestrial impact craters. Rev Geophys 30:161–191

    Article  Google Scholar 

  • Plescia JB (1996) Gravity investigation of the Manson impact structure, Iowa. In: Schultz PH, Anderson RR (eds) Manson impact structure, Iowa: anatomy of an impact crater. Geol Soc Am Spec Pap 302:89–104

  • Plescia JB (2009) Using gravity to study impact structures. 1st Arab Impact cratering and astrogeology Conference—Abst Vol, Jordan University Press, Amman, pp 70–71

  • Poag CW, Plescia JB, Molzer PC (2002) Ancient impact structures on modern continental shelves: the Chesapeake Bay, Montagnais, and Toms Canyon craters, Atlantic margin of North America. Deep Sea Res II 49:1081–1102

    Article  Google Scholar 

  • Poelchau MH, Kenkmann T, Reimold WU, Schmitt RT, Khirfan M (2009) Feather textures: a low pressure shock feature? 1st Arab impact cratering and astrogeology Conference—Abst Vol, Jordan University Press, Amman, pp 74–75

  • Powell JH (1989) Stratigraphy and sedimentation of the phanerozoic rocks in central and southern Jordan, Part A. Ram and Khreim Groups. Geological map** Division Bulletin 11A. Geology Directorate, Natural Resources Authority, Amman, p 60

  • Powell JH, Moh’d BK, Masri A (1994) Late Ordovician—early Silurian glaciofluvial deposits in palaeovalleys in South Jordan. Sed Geol 89:303–314

    Article  Google Scholar 

  • Rybakov M, Goldshmidt J, Rotstein Y, Fleischer L, Goldberg I (1999) Petrophysical constraints on gravity/magnetic interpretation in Israel. Lead Edge 18:269–272

    Article  Google Scholar 

  • Salameh E, Khoury H, Schneider W (2006) Jebel Waqf as Suwwan, Jordan: a possible impact crater—a first approach. Z deutsche Ges Geowiss 157:319–325

    Google Scholar 

  • Salameh E, Khoury H, Reimold WU, Schneider W (2008) The first large meteorite impact structure discovered in the Middle East: Jebel Waqf as Suwwan, Jordan. Meteorit Planet Sci 43:1681–1690

    Article  Google Scholar 

  • Scherler D, Kenkmann T, Jahn A (2006) Structural record of an oblique impact. Earth Planet Sci Lett 248:43–53

    Article  Google Scholar 

  • Schmieder M, Reimold WU, Buchner E, Khirfan M, Salameh E, Khoury H (2011) Shock-metamorphic microfeatures in chert from the Jebel Waqf as Suwwan impact structure, Jordan. Meteorit Planet Sci 46:574–586

    Article  Google Scholar 

  • Schultz PH, Anderson RR (1996) Asymmetry of the Manson impact structure: evidence for impact angle and direction. In: Schultz PH, Anderson RR (eds) Manson Impact structure, Iowa: Anatomy of an impact crater. Geol Soc Am Spec Pap 302:397–417

  • Sclater JG, Christie PAF (1980) Continental stretching: an explanation of the post mid-cretaceous subsidence of the central North Sea basin. J Geophys Res 85:3711–3739

    Article  Google Scholar 

  • Shoemaker EM, Shoemaker CS, Plescia JB (1989) Gravity investigation of the Conolly basin impact structure, Western Australia. In: 20th Lunar and Planet Sci Conf (1989), abstract 1010, p 2

  • Shoemaker EM, Plescia JB, Shoemaker CS (2001) Conolly Basin Impact structure, Western Australia. In: 32nd Lunar and Planet Sci Conf (2001), abstract 1311, p 2

  • Shuvalov VV (2003) Cratering process after oblique impacts. In: Third international conference on large meteorite impacts, Nördlingen, 2003, Contribution #4130

  • Stern RS, Johnson P (2010) Continental Lithosphere of the Arabian plate: a geologic, petrologic, and geophysical synthesis. Earth Sci Rev 101:29–67

    Article  Google Scholar 

  • Stickle AM, Schultz PH (2011) Exploring the role of shear in oblique impacts: a comparison of experimental and numerical results for planar targets. Int J Impact Eng 38:527–534

    Article  Google Scholar 

  • Talwani M (1998) Errors in the total Bouguer reduction. Geophysics 63:1125–1130

    Article  Google Scholar 

  • Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics, 2nd edn. Cambridge University Press, p 770

  • Turner BR, Makhlouf I (2005) Quaternary sandstones, northeast Jordan: age, depositional environments and climatic implications. Palaeo 229:230–250

    Article  Google Scholar 

  • Vajk R (1956) Bouguer corrections with varying surface density. Geophysics 21:1004–1020

    Article  Google Scholar 

  • Watts AB (2001) Isostasy and flexure of the lithosphere. Cambridge University Press, New York, p 458

    Google Scholar 

  • Wünnemann K, Kühn H, Janle P, Kenkmann T (2011) The Waqf as Suwwan impact crater, Jordan: Numerical modelling of crater formation and gravity data. In: 42nd Lunar and Planet Sci Conf (2011), 1700

  • Zachos LG, Smadi A, Ahmad F (2008) Oligocene Echinoids from Wadi al Ghadaf, Jordan. Riv Ital Paleontol Stratigr 114:41–49

    Google Scholar 

  • Zagorac Z (1970) Jebel Waqf es Suwwan area Geophysical investigations, May to Dec 1969. Report to Hashemite Kingdom of Jordan Nat. Res. Authority, Geophysics Division, for UN Special fund project, p 20, enclosures, typescript

  • Ziegler MA (2001) Late permian to holocene paleofacies evolution of the Arabian plate and its hydrocarbon occurrences. Geo Arabia 6/3:445–504, Gulf Petro Link, Bahrain

    Google Scholar 

Download references

Acknowledgments

THs thanks DAAD for financial support, the University of Jordan, Dept. of Geology, for great hospitality, and Martin Sauter, Göttingen, for continuing interest. Thanks are extended: first and foremost to Eng. Khalil Konsul, Amman, for his help in retrieving the geophysical data; to the Ministry of Higher Education/Scientific Research Fund/Jordan for financial support of the project; to the NRA, Amman, in particular geophysicist Jamal Khataibeh for release of data. Discussions of early results with Uwe Reimold (MfN, Berlin), Thomas Kenkmann (Uni-Freiburg) were stimulating for newcomers to “impactology,” Critical reviews by Jeffrey Plescia (Johns Hopkins), Kai Wünnemann (MfN, Berlin) and an anonymous reviewer are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Till Heinrichs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinrichs, T., Salameh, E. & Khouri, H. The Waqf as Suwwan crater, Eastern Desert of Jordan: aspects of the deep structure of an oblique impact from reflection seismic and gravity data. Int J Earth Sci (Geol Rundsch) 103, 233–252 (2014). https://doi.org/10.1007/s00531-013-0930-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-013-0930-4

Keywords

Navigation