Log in

The Einstein-scalar field Lichnerowicz equations on graphs

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this article, we consider the Einstein-scalar field Lichnerowicz equation

$$\begin{aligned} -\Delta u+hu=Bu^{p-1}+Au^{-p-1} \end{aligned}$$

on any connected finite graph \(G=(V,E)\), where ABh are given functions on V with \(A\ge 0\), \(A\not \equiv 0\) on V, and \(p>2\) is a constant. By using the classical variational method, topological degree theory and heat-flow method, we provide a systematical study on this equation by providing the existence results for each case: positive, negative and null Yamabe-scalar field conformal invariant, namely \(h>0\), \(h<0\) and \(h=0\) respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Chang, K.-C.: Methods in nonlinear analysis, springer monographs in mathematics. Springer, Berlin (2005)

    Google Scholar 

  2. Choquet-Bruhat, Y.: General relativity and the Einstein Equations, Oxford mathematical monographs. Oxford University Press, Oxford (2009)

    Google Scholar 

  3. Choquet-Bruhat, Y., Isenberg, J., Pollack, D.: Applications of theorems of Jean Leray to the Einstein-scalar field equations. J. fixed point theory appl. 1(1), 31–46 (2007)

    Article  MathSciNet  Google Scholar 

  4. Choquet-Bruhat, Y., Isenberg, J., Pollack, D.: The Einstein-scalar field constraints on asymptotically Euclidean manifolds. Chin. Ann. Math. Ser. B 27(1), 31–52 (2006)

    Article  MathSciNet  Google Scholar 

  5. Choquet-Bruhat, Y., Isenberg, J., Pollack, D.: The constraint equations for the Einstein-scalar field system on compact manifolds. Classic. Quant. Grav. 24(4), 809–828 (2007)

    Article  MathSciNet  Google Scholar 

  6. Dahl, M., Gicquaud, R., Humbert, E.: A limit equation associated to the solvability of the vacuum Einstein constraint equations by using the conformal method. Duke Math. J. 161(14), 2669–2697 (2012)

    Article  MathSciNet  Google Scholar 

  7. Druet, O., Hebey, E.: Stability and instability for Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds. Math. Z. 263(1), 33–67 (2009)

    Article  MathSciNet  Google Scholar 

  8. Grigor’yan, A., Lin, Y., Yang, Y.: Kazdan–Warner equation on graph. Calc. Var. Partial. Differ. Equ. 55(4), 1–13 (2016)

    Article  MathSciNet  Google Scholar 

  9. Hebey, E., Pacard, F., Pollack, D.: A variational analysis of Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds. Commun. Math. Phys. 278(1), 117–132 (2008)

    Article  MathSciNet  Google Scholar 

  10. Huang, A., Lin, Y., Yau, S.T.: Existence of solutions to mean field equations on graphs. Commun. Math. Phys. 377, 613–621 (2020)

    Article  MathSciNet  Google Scholar 

  11. Huang, H.-Y., Wang, J., Yang, W.: Mean field equation and relativistic Abelian Chern–Simons model on finite graphs. J. Funct. Anal. 281(10), 109218 (2021)

    Article  MathSciNet  Google Scholar 

  12. Isenberg, J.: Constant mean curvature solutions of the Einstein constraint equations on closed manifolds. Classic. Quant. Grav. 12(9), 2249–2274 (1995)

    Article  MathSciNet  Google Scholar 

  13. Keller, M., Schwarz, M.: The Kazdan–Warner equation on canonically compactifiable graphs. Calc. Var. Partial. Differ. Equ. 57(2), 1–20 (2018)

    Article  MathSciNet  Google Scholar 

  14. Li, J., Sun, L., Yang, Y.: Topological degree for Chern-Simons Higgs models on finite graphs. Calc. Var. Partial Differ. Equ. 63(81), 1–21 (2024)

    MathSciNet  Google Scholar 

  15. Lichnerowicz, A.: L’intégration des équations de la gravitation relativiste et le problème des \(n\) corps. J. Math. Pures Appl. 23(9), 37–63 (1944)

    MathSciNet  Google Scholar 

  16. Liu, S., Yang, Y.: Multiple solutions of Kazdan–Warner equation on graphs in the negative case. Calc. Var. Partial. Differ. Equ. 59(5), 1–15 (2020)

    Article  MathSciNet  Google Scholar 

  17. Ma, L., Sun, Y., Tang, X.: Heat flow method for Lichnerowicz type equations on closed manifolds. Z. Angew. Math. Phys. 63, 261–270 (2012)

    Article  MathSciNet  Google Scholar 

  18. Ma, L., Wei, J.: Stability and multiple solutions to Einstein-scalar field Lichnerowicz equation on manifolds. J. Math. Pures Appl. 99(2), 174–186 (2013)

    Article  MathSciNet  Google Scholar 

  19. Ngô, Q.A., Xu, X.: Existence results for the Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds. Adv. Math. 230(4–6), 2378–2415 (2012)

    Article  MathSciNet  Google Scholar 

  20. Ngô, Q.A., Xu, X.: Existence results for the Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds in the null case. Commun. Math. Phys. 334, 193–222 (2015)

    Article  MathSciNet  Google Scholar 

  21. Premoselli, B.: Effective multiplicity for the Einstein-scalar field Lichnerowicz equation. Calc. Var. Partial. Differ. Equ. 53(1–2), 29–64 (2015)

    Article  MathSciNet  Google Scholar 

  22. Struwe, M.: Variational methods, applications to nonlinear partial differential equations and Hamiltonian systems, 4th edn. Springer, Berlin (2008)

    Google Scholar 

  23. Sun, L., Wang, L.: Brouwer degree for Kazdan–Warner equations on a connected finite graph. Adv. Math. 404, 108422 (2022)

    Article  MathSciNet  Google Scholar 

  24. Wang, G., et al.: Ordinary differential equations. Higher Education Press, Bei**g (2006). ((in Chinese))

    Google Scholar 

Download references

Acknowledgements

Y. Liu is partially supported by the National Key R &D Program of China 2022YFA1005400 and NSFC No. 11971026, NSFC No. 12141105. C. Wang is partially supported by NSFC No.12071169. J. Wang is partially supported by National Key R &D Program of China 2022YFA1005601 and NSFC No.12371114. W. Yang is partially supported by National Key R &D Program of China 2022YFA1006800, NSFC No.12171456, NSFC No.12271369 and No. SRG2023-00067-FST.

Funding

Innovative Research Group Project of the National Natural Science Foundation of China 11971202

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Yang.

Additional information

Communicated by M. del Pino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, L., Liu, Y., Wang, C. et al. The Einstein-scalar field Lichnerowicz equations on graphs. Calc. Var. 63, 138 (2024). https://doi.org/10.1007/s00526-024-02737-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-024-02737-1

Mathematics subject classification

Navigation