Log in

On the existence of optimizers for time–frequency concentration problems

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the problem of the maximum concentration in a fixed measurable subset \(\Omega \subset {\mathbb {R}}^{2d}\) of the time-frequency space for functions \(f\in L^2({\mathbb {R}}^{d})\). The notion of concentration can be made mathematically precise by considering the \(L^p\)-norm on \(\Omega \) of some time–frequency distribution of f such as the ambiguity function A(f). We provide a positive answer to an open maximization problem, by showing that for every subset \(\Omega \subset {\mathbb {R}}^{2d}\) of finite measure and every \(1\le p<\infty \), there exists an optimizer for

$$\begin{aligned} \sup \{\Vert A(f)\Vert _{L^p(\Omega )}:\ f\in L^2({\mathbb {R}}^{d}),\ \Vert f\Vert _{L^2}=1 \}. \end{aligned}$$

The lack of weak upper semicontinuity and the invariance under time-frequency shifts make the problem challenging. The proof is based on concentration compactness with time–frequency shifts as dislocations, and certain integral bounds and asymptotic decoupling estimates for the ambiguity function. We also discuss the case \(p=\infty \) and related optimization problems for the time correlation function, the cross-ambiguity function with a fixed window, and for functions in the modulation spaces \(M^q({\mathbb {R}}^{d})\), \(0<q<2\), equipped with continuous or discrete-type (quasi-)norms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bargmann, V.: Irreducible unitary representations of the Lorentz group. Ann. Math. 2(48), 568–640 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benedetto, J.J., Benedetto, R.L., Woodworth, J.T.: Optimal ambiguity functions and Weil’s exponential sum bound. J. Fourier Anal. Appl. 18(3), 471–487 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bényi, Á., Okoudjou, K.A.: Modulation Spaces: With Applications to Pseudodifferential Operators and Nonlinear Schrödinger Equations. Applied and Numerical Harmonic Analysis, Birkhäuser Basel (2020)

  4. Bergh, J., Löfström, J.: Interpolation Spaces: An Introduction. Grundlehren der Mathematischen Wissenschaften, No. 223. Springer, Berlin (1976)

  5. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88(3), 486–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36(4), 437–477 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen, L.: Time-Frequency Analysis. Prentice-Hall, New York (1995)

    Google Scholar 

  8. Cook, C.E., Bernfeld, M.: Radar Signals: An Introduction to Theory and Applications. Academic Press, New York (1967)

    Google Scholar 

  9. Cordero, E., Gröchenig, K.: Time-frequency analysis of localization operators. J. Funct. Anal. 205(1), 107–131 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cordero, E., Nicola, F.: Sharp integral bounds for Wigner distributions. Int. Math. Res. Not. IMRN 6, 1779–1807 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cowling, M.: The Kunze-Stein phenomenon. Ann. Math. 107(2), 209–234 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. Daubechies, I.: Time-frequency localization operators: a geometric phase space approach. IEEE Trans. Inform. Theory 34(4), 605–612 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. de Gosson, M.A.: Symplectic Methods in Harmonic Analysis and in Mathematical Physics, vol. 7. Birkhäuser/Springer Basel AG, Basel (2011)

    Book  MATH  Google Scholar 

  14. Ehrenpreis, L., Mautner, F.: Uniformly bounded representations of groups. Proc. Nat. Acad. Sci. USA 41, 231–233 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fefferman, C.L.: The uncertainty principle. Bull. Am. Math. Soc. 9(2), 129–206 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feichtinger, H. G., Onchis-Moaca, D., Ricaud, B., Torrésani, B., Wiesmeyr, C.: A method for optimizing the ambiguity function concentration. In 2012 Proceedings of the 20th European signal processing conference (EUSIPCO), pages 804–808, (2012)

  17. Flandrin, P.: Maximum signal energy concentration in a time-frequency domain. In: ICASSP-88. International conference on acoustics, speech, and signal processing. 4, 2176–2179 (1988)

  18. Flandrin, P.: Time-frequency/time-scale analysis, volume 10 of Wavelet analysis and its applications. Academic Press, Inc., San Diego, CA, 1999. With a preface by Yves Meyer, Translated from the French by Joachim Stöckler

  19. Flandrin, P.: Explorations in Time-Frequency Analysis. Cambridge University Press, Cambridge (2018)

    Book  MATH  Google Scholar 

  20. Folland, G.B.: Harmonic Analysis in Phase Space. In: Annals of Mathematics Studies, vol. 122. Princeton University Press, Princeton, NJ (1989)

  21. Folland, G.B., Sitaram, A.: The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3(3), 207–238 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fuchs, W. H. J.: On the magnitude of fourier transforms. In Proc. Intern. Congress Math., volume II, pages 106–107. North-Holland, Amsterdam, (1954)

  23. Gabor, D.: Theory of communication. J. IEEE 93(III), 429–457 (1946)

    Google Scholar 

  24. Galperin, Y.V., Samarah, S.: Time-frequency analysis on modulation spaces \(M^{p, q}_m\), \(0<p, q\le \infty \). Appl. Comput. Harmon. Anal. 16(1), 1–18 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser Boston Inc, Boston (2001)

    Book  MATH  Google Scholar 

  26. Knapp, A. W.: Representation theory of semisimple groups. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ, 2001. An overview based on examples, Reprint of the 1986 original

  27. Kunze, R.A., Stein, E.M.: Uniformly bounded representations and harmonic analysis of the \(2\times 2\) real unimodular group. Amer. J. Math. 82, 1–62 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  28. Landau, H. J.: An overview of time and frequency limiting. In Fourier techniques and applications (Kensington, 1983), pages 201–220. Plenum, New York, (1985)

  29. Landau, H.J., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty: II. Bell Syst. Tech. J. 40, 65–84 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lerner, N.: Integrating the wigner distribution on subsets of the phase space, a survey. ar**v:2102.08090, (2021)

  31. Lieb, E.H.: Integral bounds for radar ambiguity functions and Wigner distributions. J. Math. Phys. 31(3), 594–599 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lieb, E.H., Loss, M.: Analysis. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  33. Lieb, E.H., Ostrover, Y.: Localization of multidimensional Wigner distributions. J. Math. Phys. 51(10), 102101,6 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lions, P.-L.: The concentration-compactness principle in the calculus of variations: the limit case. I. Rev. Mat. Iberoamericana 1(1), 145–201 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. II. Rev. Mat. Iberoamericana 1(2), 45–121 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mallat, S.: A Wavelet Your of Signal Processing: The Sparse Way. Elsevier/Academic Press, Amsterdam (2009)

    MATH  Google Scholar 

  37. Matz, G., Bölcskei, H., Hlawatsch, F.: Time-frequency foundations of communications: concepts and tools. IEEE Signal Process. Mag. 30(6), 87–96 (2013)

    Article  Google Scholar 

  38. Matz, G., Schafhuber, D., Gröchenig, K., Hartmann, M., Hlawatsch, F.: Analysis, optimization, and implementation of low-interference wireless multicarrier systems. IEEE Trans. Wireless Commun. 6(5), 1921–1931 (2007)

    Article  Google Scholar 

  39. Nicola, F., Tilli, P.: The faber-krahn inequality for the short-time fourier transform. Invent. Math. 230, 1–30 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ricaud, B., Stempfel, G., Torrésani, B., Wiesmeyr, C., Lachambre, H., Onchis, D.: An optimally concentrated Gabor transform for localized time-frequency components. Adv. Comput. Math. 40(3), 683–702 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ricaud, B., Torrésani, B.: A survey of uncertainty principles and some signal processing applications. Adv. Comput. Math. 40(3), 629–650 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rihaczek, A.W.: Principles of High-Resolution Radar. Artech House, Boston (1996)

    MATH  Google Scholar 

  43. Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of \(2\)-spheres. Ann. Math. 113(1), 1–24 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  44. Slepian, D.: Some comments on Fourier analysis, uncertainty and modeling. SIAM Rev. 25(3), 379–393 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  45. Struwe, M.: A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math. Z. 187(4), 511–517 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tao, T.: Compactness and Contradiction. American Mathematical Society, Providence (2013)

    Book  MATH  Google Scholar 

  47. Tao, T., Vargas, A., Vega, L.: A bilinear approach to the restriction and Kakeya conjectures. J. Am. Math. Soc. 11(4), 967–1000 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tintarev, K., Fieseler, K.-H.: Concentration Compactness. Imperial College Press, London (2007)

    Book  MATH  Google Scholar 

  49. Vetterli, M., Kovačević, J., Goyal, V.K.: Foundations of Signal Processing. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  50. Wong, M.W.: Wavelet Transforms and Localization Operators. Birkhäuser Verlag, Basel (2002)

    Book  MATH  Google Scholar 

  51. Woodward, P.M.: Probability and Information Theory, with Applications to Radar. Pergamon Press, Oxford-Edinburgh-New York-Paris-Frankfurt (1964)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Karlheinz Gröchenig for bringing to their attention the problem solved here, in connection to an unpublished manuscript of his and Markus Neuhauser. The present research has been partially supported by the MIUR grant Dipartimenti di Eccellenza 2018–2022, CUP: E11G18000350001, DISMA, Politecnico di Torino. J. L. R. gratefully acknowledges support from the Austrian Science Fund (FWF): Y 1199. S. I. T. is member of the Machine Learning Genoa (MaLGa) Center, Università di Genova. F. N. and S. I. T. are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ivan Trapasso.

Ethics declarations

Conflict of interest

The authors declare no competing interests. Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Additional information

Communicated by Andrea Mondino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicola, F., Romero, J.L. & Trapasso, S.I. On the existence of optimizers for time–frequency concentration problems. Calc. Var. 62, 21 (2023). https://doi.org/10.1007/s00526-022-02358-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02358-6

Mathematics Subject Classification

Navigation