Log in

Optimal shape of a domain which minimizes the first buckling eigenvalue

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we prove the existence of an optimal domain which minimizes the buckling load of a clamped plate among all bounded domains with given measure. Instead of treating this variational problem with a volume constraint, we introduce a problem without any constraints, but with a penalty term. We concentrate on the minimizing function and prove that it has Lipschitz continuous first derivatives. Furthermore, we show that the penalized problem and the original problem can be treated as equivalent. Finally, we establish some qualitative properties of the free boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alt, H.W., Caffarelli, L.A.: Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325, 105–144 (1981)

    MathSciNet  MATH  Google Scholar 

  2. Ashbaugh, M.S., Bucur, D.: On the isoperimetric inequality for the buckling of a clamped plate. Z. Angew. Math. Phys. 54, 756–770 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bandle, C., Wagner, A.: Optimization problems for weighted Sobolev constants. Calc. Var. Partial Differ. Equ. 29(4), 481–501 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bandle, C., Wagner, A.: Optimization problems for an energy functional with mass constraint revisited. J. Math. Anal. Appl. (2008). doi:10.1016/j.jmaa.2008.05.2012

  5. Caffarelli, L.A., Friedman, A.: The obstacle problem for the biharmonic operator. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 6(1), 151–184 (1979)

  6. Di Nezza, E., Platucci, G., Valdinoci, E.: Hitchhiker’s Guide to the Fractional Sobolev Spaces. ar**v:1104.4345 (2011)

  7. Faber, G.: Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt. Sitz. Ber. Bayer. Akad. Wiss, pp. 169–172 (1923)

  8. Frehse, J.: On the regularity of the solution of the biharmonic variational inequality. Manuscripta Math. 9, 91–103 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  9. Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton University Press, Princeton (1983)

    MATH  Google Scholar 

  10. Giaquinta, M., Giusti, E.: On the regularity of the minima of variational integrals. Acta. Math. 148, 31–46 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Giaquinta, M., Modica, G.: Regularity results for some classes of higher order nonlinear elliptic systems. J. Reine Angew. Math. 311(312), 145–169 (1979)

    MathSciNet  Google Scholar 

  12. Knappmann, K.: Die zweite Gebietsvariation für die gebeulte Platte. Diploma Thesis, RWTH Aachen University (2008)

  13. Knappmann, K.: Optimal Shape of a Domain Which Minizes the First Buckling Eigenvalue. PhD Thesis, RWTH Aachen University (2013)

  14. Krahn, E.: Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises. Math. Ann. 94(1), 97–100 (1925)

    Article  MathSciNet  MATH  Google Scholar 

  15. Maly, J., Ziemer, W.P.: Fine Regularity of Solutions of Elliptic Partial Differential Equations. AMS (1997)

  16. Mohr, E.: Über die Rayleighsche Vermutung: unter allen Platten von gegebener Fläche und konstanter Dichte und Elastizität hat die kreisförmige den tiefsten Grundton. Ann. Mat. Pura Appl. 4(104), 85–122 (1975)

    Article  MathSciNet  Google Scholar 

  17. Morrey, C.B.: Multiple Integrals in the Calculus of Variations. Springer, Berlin (1966)

    MATH  Google Scholar 

  18. Polya, G., Szegö, G.: Isoperimetric Inequalities in Mathematical Physics. Princeton University Press, Princeton (1951)

    MATH  Google Scholar 

  19. Rayleigh, B., Strutt, J.W.: The Theory of Sound, 2nd edn. Dover Publications, New York (1945)

    MATH  Google Scholar 

  20. Stepanov, T., Tilli, P.: On the Dirichlet problem with several volume constraints on the level sets. Proc. R. Soc. Edinb. 132A, 437–461 (2002)

    Article  MathSciNet  Google Scholar 

  21. Szegö, G.: On membranes and plates. Proc. Natl. Acad. Sci. U.S.A. 36, 210–216 (1950)

    Article  MATH  Google Scholar 

  22. Willms, B.: An isoperimetric inequality for the buckling of a clamped plate. In: Berestycki, H., Kawohl, B., Talenti, G. (eds.) Lecture at the Oberwolfach Meeting on ’Qualitative properties of PDE’ (1995)

Download references

Acknowledgments

This work is part of the author’s Ph.D. Thesis at the RWTH Aachen University. The author is very grateful to her advisor Alfred Wagner for many helpful discussions and his continuous support. The author also likes to thank the referee for pointing out an error in an earlier version of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathrin Stollenwerk.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stollenwerk, K. Optimal shape of a domain which minimizes the first buckling eigenvalue. Calc. Var. 55, 5 (2016). https://doi.org/10.1007/s00526-015-0944-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-015-0944-9

Mathematics Subject Classification

Navigation