Log in

Neuro-symbolic artificial intelligence: a survey

  • Review
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The goal of the growing discipline of neuro-symbolic artificial intelligence (AI) is to develop AI systems with more human-like reasoning capabilities by combining symbolic reasoning with connectionist learning. We survey the literature on neuro-symbolic AI during the last two decades, including books, monographs, review papers, contribution pieces, opinion articles, foundational workshops/talks, and related PhD theses. Four main features of neuro-symbolic AI are discussed, including representation, learning, reasoning, and decision-making. Finally, we discuss the many applications of neuro-symbolic AI, including question answering, robotics, computer vision, healthcare, and more. Scalability, explainability, and ethical considerations are also covered, as well as other difficulties and limits of neuro-symbolic AI. This study summarizes the current state of the art in neuro-symbolic artificial intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Code availability

Not applicable.

References

  1. Helm JM, Swiergosz AM, Haeberle HS, Karnuta JM, Schaffer JL, Krebs VE, Spitzer AI, Ramkumar PN (2020) Machine learning and artificial intelligence: definitions, applications, and future directions. Curr Rev Musculoskelet Med 13:69–76

    Article  Google Scholar 

  2. Hassan AM, Rajesh A, Asaad M, Nelson JA, Coert JH, Mehrara BJ, Butler CE (2023) Artificial intelligence and machine learning in prediction of surgical complications: current state, applications, and implications. Am Surg 89(1):25–30

    Article  Google Scholar 

  3. Novakovsky G, Dexter N, Libbrecht MW, Wasserman WW, Mostafavi S (2023) Obtaining genetics insights from deep learning via explainable artificial intelligence. Nat Rev Genet 24(2):125–137

    Article  Google Scholar 

  4. Jebamikyous H, Li M, Suhas Y, Kashef R (2023) Leveraging machine learning and blockchain in e-commerce and beyond: benefits, models, and application. Discov Artif Intell 3(1):3

    Article  Google Scholar 

  5. Rawat W, Wang Z (2017) Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput 29(9):2352–2449

    Article  MathSciNet  Google Scholar 

  6. Bond-Taylor S, Leach A, Long Y, Willcocks CG (2021) Deep generative modelling: a comparative review of vaes, gans, normalizing flows, energy-based and autoregressive models. IEEE Trans Pattern Anal Mach Intell

  7. Shakarami A, Ghobaei-Arani M, Shahidinejad A (2020) A survey on the computation offloading approaches in mobile edge computing: a machine learning-based perspective. Comput Netw 182:107496

    Article  Google Scholar 

  8. Li B, Qi P, Liu B, Di S, Liu J, Pei J, Yi J, Zhou B (2023) Trustworthy ai: From principles to practices. ACM Comput Surv 55(9):1–46

    Article  Google Scholar 

  9. Augusto LM (2021) From symbols to knowledge systems: A. Newell and Ha Simon’s contribution to symbolic ai

  10. Newell A (1980) Physical symbol systems. Cogn Sci 4(2):135–183

    Google Scholar 

  11. Newell A (1982) The knowledge level. Artif Intell 18(1):87–127

    Article  MathSciNet  Google Scholar 

  12. Uschold M, Gruninger M (1996) Ontologies: principles, methods and applications. knowl Eng Rev 11(2):93–136

    Article  Google Scholar 

  13. Reed SK, Pease A (2017) Reasoning from imperfect knowledge. Cogn Syst Res 41:56–72

    Article  Google Scholar 

  14. Youheng Z (2023) A historical review and philosophical examination of the two paradigms in artificial intelligence research. Eur J Artif Intell Mach Learn 2(2):24–32

    Article  Google Scholar 

  15. Wermter S, Sun R An overview of hybrid neural systems. Subseries of Lecture Notes in Computer Science Edited by JG Carbonell and J. Siekmann, 1

  16. Garcez ASd, Broda KB, Gabbay DM Neural-symbolic learning systems foundations and applications

  17. Hammer B, Hitzler P (2007) Perspectives of neural-symbolic integration vol 77

  18. Sun R, Alexandre F (2013) Connectionist-symbolic integration: from unified to hybrid approaches

  19. Chaudhuri S, Ellis K, Polozov O, Singh R, Solar-Lezama A, Yue Y (2021) Neurosymbolic programming. Found Trends® Program Lang 7(3):158–243

  20. Hitzler P, Eberhart A, Ebrahimi M, Sarker MK, Zhou L (2022) Neuro-symbolic approaches in artificial intelligence. Natl Sci Rev 9(6):035

    Article  Google Scholar 

  21. Velik R (2008) A bionic model for human-like machine perception

  22. Gallagher K (2018) Request confirmation networks: a cortically inspired approach to neuro-symbolic script execution. PhD thesis, Harvard University

  23. Martin LJ (2021) Neurosymbolic automated story generation. PhD thesis, Georgia Institute of Technology

  24. Corchado JM, Aiken J (2002) Hybrid artificial intelligence methods in oceanographic forecast models. IEEE Trans Syst Man Cybern Part C (Appl Rev) 32(4):307–313

    Article  Google Scholar 

  25. Hatzilygeroudis I, Prentzas J (2004) Neuro-symbolic approaches for knowledge representation in expert systems. Int J Hybrid Intell Syst 1(3–4):111–126

    Google Scholar 

  26. Öztürk P, Tidemann A (2014) A review of case-based reasoning in cognition-action continuum: a step toward bridging symbolic and non-symbolic artificial intelligence. Knowl Eng Rev 29(1):51–77

    Article  Google Scholar 

  27. Besold TR, Garcez Ad, Bader S, Bowman H, Domingos P, Hitzler P, Kühnberger K-U, Lamb LC, Lowd D, Lima PMV et al (2017) Neural-symbolic learning and reasoning: a survey and interpretation. ar**v preprint ar**v:1711.03902

  28. Garnelo M, Shanahan M (2019) Reconciling deep learning with symbolic artificial intelligence: representing objects and relations. Curr Opin Behav Sci 29:17–23

    Article  Google Scholar 

  29. Garcez Ad, Gori M, Lamb LC, Serafini L, Spranger M, Tran SN (2019) Neural-symbolic computing: an effective methodology for principled integration of machine learning and reasoning. ar**v preprint ar**v:1905.06088

  30. De Raedt L, Dumančić S, Manhaeve R, Marra G (2020) From statistical relational to neuro-symbolic artificial intelligence. ar**v preprint ar**v:2003.08316

  31. Sarker MK, Zhou L, Eberhart A, Hitzler P (2021) Neuro-symbolic artificial intelligence. AI Commun 34(3):197–209

    Article  MathSciNet  Google Scholar 

  32. Wang W, Yang Y (2022) Towards data-and knowledge-driven artificial intelligence: a survey on neuro-symbolic computing. ar**v preprint ar**v:2210.15889

  33. Garcez Ad, Lamb LC (2023) Neurosymbolic ai: the 3rd wave. Artif Intell Rev 56:1–20

    Article  Google Scholar 

  34. Towell GG, Shavlik JW (1994) Knowledge-based artificial neural networks. Artif intell 70(1–2):119–165

    Article  Google Scholar 

  35. Pinkas G (1995) Reasoning, nonmonotonicity and learning in connectionist networks that capture propositional knowledge. Artif Intell 77(2):203–247

    Article  MathSciNet  Google Scholar 

  36. Avila Garcez AS, Zaverucha G (1999) The connectionist inductive learning and logic programming system. Appl Intell 11:59–77

    Article  Google Scholar 

  37. França MV, Zaverucha G, Garcez AS (2014) Fast relational learning using bottom clause propositionalization with artificial neural networks. Mach Learn 94:81–104

    Article  MathSciNet  Google Scholar 

  38. Burattini E, De Gregorio M, Francesco A (2002) Nsl: a neuro-symbolic language for monotonic and non-monotonic logical inferences. In: SBRN, pp 256–261

  39. Garcez A, Lamb L (2003) Reasoning about time and knowledge in neural symbolic learning systems. In: Advances in neural information processing systems, vol 16

  40. Garcez ASd, Lamb LC (2006) A connectionist computational model for epistemic and temporal reasoning. Neural Comput 18(7):1711–1738

    Article  MathSciNet  Google Scholar 

  41. Lima PMV, Morveli-Espinoza MM, Pereira GC, Franga F (2005) Satyrus: a sat-based neuro-symbolic architecture for constraint processing. In: Fifth international conference on hybrid intelligent systems (HIS’05). IEEE, p 6

  42. Burattini E, Datteri E, Tamburrini G (2005) Neuro-symbolic programs for robots. In: Proceedings of NeSy, vol 5

  43. Burattini E, De Gregorio M, Rossi S (2010) An adaptive oscillatory neural architecture for controlling behavior based robotic systems. Neurocomputing 73(16–18):2829–2836

    Article  Google Scholar 

  44. Sathasivam S, Velavan M (2010) Neuro symbolic integration using pseudo inverse rule. In: Annual international conference on advance topics in artificial intelligence, Phuket, Thailand

  45. Sathasivam S (2011) Learning rules comparison in neuro-symbolicintegration. Int J Appl Phys Math 1(2):129

    Article  MathSciNet  Google Scholar 

  46. Sathasivam S (2012) Applying different learning rules in neuro-symbolic integration. In: Advanced materials research, vol 433. Trans Tech Publ, pp 716–720

  47. Velik R (2010) The neuro-symbolic code of perception. J Cogn Sci 11(2):161–180

    Article  Google Scholar 

  48. Komendantskaya E, Broda K, Garcez A (2010) Using inductive types for ensuring correctness of neuro-symbolic computations

  49. Prentzas J, Hatzilygeroudis I (2011) Neurules-a type of neuro-symbolic rules: an overview. Springer, Berlin, pp 145–165

    Google Scholar 

  50. Prentzas J, Hatzilygeroudis I (2011) Efficiently merging symbolic rules into integrated rules

  51. Hatzilygeroudis I, Prentzas J (2015) Symbolic-neural rule based reasoning and explanation. Expert Syst Appl 42(9):4595–4609

    Article  Google Scholar 

  52. Prentzas J, Hatzilygeroudis I (2016) Assessment of life insurance applications: an approach integrating neuro-symbolic rule-based with case-based reasoning. Expert Syst 33(2):145–160

    Article  Google Scholar 

  53. Sreelekha S (2018) Neurosymbolic integration with uncertainty. Ann Math Artif Intell 84(3–4):201–220

    MathSciNet  Google Scholar 

  54. Prentzas J, Hatzilygeroudis I (2018) Using clustering algorithms to improve the production of symbolic-neural rule bases from empirical data. Int J Artif Intell Tools 27(02):1850002

    Article  Google Scholar 

  55. Borges RV, Garcez Ad, Lamb LC (2011) Learning and representing temporal knowledge in recurrent networks. IEEE Trans Neural Netw 22(12):2409–2421

    Article  Google Scholar 

  56. Socher R, Chen D, Manning CD, Ng A (2013) Reasoning with neural tensor networks for knowledge base completion. In: Advances in neural information processing systems, vol 26

  57. Riveret R, Pitt JV, Korkinof D, Draief M (2015) Neuro-symbolic agents: Boltzmann machines and probabilistic abstract argumentation with sub-arguments. In: AAMAS, pp 1481–1489

  58. Bach J (2015) Modeling motivation in micropsi 2. In: Artificial general intelligence: 8th international conference, AGI 2015, AGI 2015, Berlin, Germany, July 22-25, 2015, Proceedings 8. Springer, pp 3–13

  59. Bach J (2009) Principles of synthetic intelligence psi: an architecture of motivated cognition, vol 4

  60. Varadarajan KM, Vincze M (2015) Affordance and k-tr augmented alphabet based neuro-symbolic language-af-ktraans-a human-robot interaction meta-language. In: 2015 20th international conference on methods and models in automation and robotics (MMAR). IEEE, pp 394–399

  61. Abubakar H, Masanawa SA, Yusuf S (2020) Neuro-symbolic integration of hopfield neural network for optimal maximum random ksatisfiability (maxrksat) representation. J Reliab Stat Stud 13:199–220

    Google Scholar 

  62. Parisotto E, Mohamed A-r, Singh R, Li L, Zhou D, Kohli P (2016) Neuro-symbolic program synthesis. ar**v preprint ar**v:1611.01855

  63. Tran SN, Garcez ASd (2016) Deep logic networks: Inserting and extracting knowledge from deep belief networks. IEEE Trans Neural Netw Learn Syst 29(2):246–258

    Article  MathSciNet  Google Scholar 

  64. Hu Z, Ma X, Liu Z, Hovy E, **ng E (2016) Harnessing deep neural networks with logic rules. ar**v preprint ar**v:1603.06318

  65. Rocktäschel T, Riedel S (2016) Learning knowledge base inference with neural theorem provers. In: Proceedings of the 5th workshop on automated knowledge base construction, pp 45–50

  66. Serafini L, Garcez AS (2016) Learning and reasoning with logic tensor networks. In: AI* IA 2016 advances in artificial intelligence: XVth international conference of the Italian association for artificial intelligence, Genova, Italy, November 29–December 1, 2016, Proceedings XV. Springer, pp 334–348

  67. Manigrasso F, Miro FD, Morra L, Lamberti F (2021) Faster-ltn: a neuro-symbolic, end-to-end object detection architecture. In: Artificial neural networks and machine learning–ICANN 2021: 30th international conference on artificial neural networks, Bratislava, Slovakia, September 14–17, 2021, Proceedings, Part II 30. Springer, pp 40–52

  68. Badreddine S, Garcez Ad, Serafini L, Spranger M (2022) Logic tensor networks. Artif Intell 303:103649

    Article  MathSciNet  Google Scholar 

  69. Wang G (2017) Dgcc: data-driven granular cognitive computing. Granular Comput 2(4):343–355

    Article  Google Scholar 

  70. Tran SN (2017) Propositional knowledge representation and reasoning in restricted boltzmann machines. ar**v preprint ar**v:1705.10899

  71. Cohen WW, Yang F, Mazaitis KR (2017) Tensorlog: Deep learning meets probabilistic dbs. ar**v preprint ar**v:1707.05390

  72. Palangi H, Smolensky P, He X, Deng L (2018) Question-answering with grammatically-interpretable representations. In: Proceedings of the AAAI conference on artificial intelligence, vol 32

  73. Evans R, Grefenstette E (2018) Learning explanatory rules from noisy data. J Artif Intell Res 61:1–64

    Article  MathSciNet  Google Scholar 

  74. Minervini P, Bošnjak M, Rocktäschel T, Riedel S, Grefenstette E (2020) Differentiable reasoning on large knowledge bases and natural language. In: Proceedings of the AAAI conference on artificial intelligence, vol 34, pp 5182–5190

  75. Manhaeve R, Dumancic S, Kimmig A, Demeester T, De Raedt, L (2018) Deepproblog: neural probabilistic logic programming. In: Advances in neural information processing systems, vol 31

  76. De Raedt L, Manhaeve R, Dumancic S, Demeester T, Kimmig A (2019) Neuro-symbolic= neural+ logical+ probabilistic. In: NeSy’19@ IJCAI, the 14th international workshop on neural-symbolic learning and reasoning

  77. Manhaeve R, De Raedt L, Kimmig A, Dumancic S, Demeester T (2019) Deepproblog: integrating logic and learning through algebraic model counting. In: KR2ML Workshop@ Neurips’19, Vancouver, Canada

  78. Dong H, Mao J, Lin T, Wang C, Li L, Zhou D (2019) Neural logic machines. ar**v preprint ar**v:1904.11694

  79. Young H, Bastani O, Naik M (2019) Learning neurosymbolic generative models via program synthesis. In: International conference on machine learning. PMLR, pp 7144–7153

  80. Daniele A, Serafini L (2019) Knowledge enhanced neural networks. In: PRICAI 2019: trends in artificial intelligence: 16th Pacific Rim international conference on artificial intelligence, Cuvu, Yanuca Island, Fiji, August 26–30, 2019, Proceedings, Part I 16. Springer, pp 542–554

  81. Bosselut A, Rashkin H, Sap M, Malaviya C, Celikyilmaz A, Choi Y (2019) Comet: Commonsense transformers for automatic knowledge graph construction. ar**v preprint ar**v:1906.05317

  82. Bosselut A, Le Bras R, Choi Y (2021) Dynamic neuro-symbolic knowledge graph construction for zero-shot commonsense question answering. In: Proceedings of the AAAI conference on artificial intelligence, vol 35, pp 4923–4931

  83. Dang-Nhu R (2020) Plans: Neuro-symbolic program learning from videos. Adv Neural Inf Process Syst 33:22445–22455

    Google Scholar 

  84. Amizadeh S, Palangi H, Polozov A, Huang Y, Koishida K (2020) Neuro-symbolic visual reasoning: Disentangling. In: International conference on machine learning. PMLR, pp 279–290

  85. Hewitt L, Le TA, Tenenbaum J (2020) Learning to learn generative programs with memoised wake-sleep. In: Conference on uncertainty in artificial intelligence. PMLR, pp 1278–1287

  86. Riegel R, Gray A, Luus F, Khan N, Makondo N, Akhalwaya IY, Qian H, Fagin R, Barahona F, Sharma U, et al (2020) Logical neural networks. ar**v preprint ar**v:2006.13155

  87. Sen P, Carvalho BW, Riegel R, Gray A (2022) Neuro-symbolic inductive logic programming with logical neural networks. In: Proceedings of the AAAI conference on artificial intelligence, vol. 36, pp 8212–8219

  88. Zimmer M, Feng X, Glanois C, Jiang Z, Zhang J, Weng P, Dong L, Jianye H, Wulong L (2021) Differentiable logic machines. ar**v preprint ar**v:2102.11529

  89. Arabshahi F, Lee J, Gawarecki M, Mazaitis K, Azaria A, Mitchell T (2021) Conversational neuro-symbolic commonsense reasoning. In: Proceedings of the AAAI conference on artificial intelligence, vol 35, pp 4902–4911

  90. Shindo H, Dhami DS, Kersting K (2021) Neuro-symbolic forward reasoning. ar**v preprint ar**v:2110.09383

  91. Škrlj B, Martinc M, Lavrač N, Pollak S (2021) autobot: evolving neuro-symbolic representations for explainable low resource text classification. Mach Learn 110:989–1028

    Article  MathSciNet  Google Scholar 

  92. Duan X, Wang X, Zhao P, Shen G, Zhu W (2022) Deeplogic: Joint learning of neural perception and logical reasoning. IEEE Trans Pattern Anal Mach Intell

  93. Glanois C, Jiang Z, Feng X, Weng P, Zimmer M, Li D, Liu W, Hao J (2022) Neuro-symbolic hierarchical rule induction. In: International conference on machine learning, PMLR, pp 7583–7615

  94. Cambria E, Liu Q, Decherchi S, **ng F, Kwok K (2022) Senticnet 7: A commonsense-based neurosymbolic ai framework for explainable sentiment analysis. In: Proceedings of the thirteenth language resources and evaluation conference, pp 3829–3839

  95. Han Z, Cai L-W, Dai W-Z, Huang Y-X, Wei B, Wang W, Yin Y (2023) Abductive subconcept learning. Sci China Inf Sci 66(2):1–13

    Article  MathSciNet  Google Scholar 

  96. Wermter S, Sun R (2001) The present and the future of hybrid neural symbolic systems some reflections from the nips workshop. AI Mag 22(1):123–123

    Google Scholar 

  97. Kelley TD (2003) Symbolic and sub-symbolic representations in computational models of human cognition: what can be learned from biology? Theory Psychol 13(6):847–860

    Article  Google Scholar 

  98. Rapaport WJ (2003) How to pass a turing test: Syntactic semantics, natural-language understanding, and first-person cognition. The Turing test: the elusive standard of artificial intelligence, 161–184

  99. Bader S, Hitzler P, Hölldobler S (2004) The integration of connectionism and first-order knowledge representation and reasoning as a challenge for artificial intelligence. ar**v preprint cs/0408069

  100. Pugeda TGS III (2005) Artificial intelligence and ethical reflections from the catholic church. Intelligence 26(4):53

    Google Scholar 

  101. Ray O, Garcez AS (2006) Towards the integration of abduction and induction in artificial neural networks. In: Proceedings of the ECAI, vol 6. Citeseer, pp 41–46

  102. Rawbone P, Paor P, Ware JA, Barrett J (2006) Interactive causation: a neurosymbolic agent. In: IC-AI. Citeseer, pp 51–55

  103. Velik R, Bruckner D (2008) euro-symbolic networks: introduction to a new information processing principle. In: 2008 6th IEEE international conference on industrial informatics. IEEE, pp 1042–1047

  104. Kühnberger K-U, Gust H, Geibel P (2008) erspectives of neuro–symbolic integration–extended abstract–. In: Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik

  105. Kühnberger K-U, Geibel P, Gust H, Krumnack U, Ovchinnikova E, Schwering A, Wandmacher T (2008) Learning from inconsistencies in an integrated cognitive architecture. Front Artif Intell Appl 171:212

    Google Scholar 

  106. Haikonen PO (2009) The role of associative processing in cognitive computing. Cogn Comput 1:42–49

    Article  Google Scholar 

  107. Prentzas J, Hatzilygeroudis I (2009) Combinations of case-based reasoning with other intelligent methods. Int J Hybrid Intell Syst 6(4):189–209

    Google Scholar 

  108. Garcez AS (2010) eurons and symbols: a manifesto. In: Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum fÃ\(1/4\)r Informatik

  109. Velik R (2010) Why machines cannot feel. Mind Mach 20(1):1–18

    Article  Google Scholar 

  110. Bruckner D, Velik R, Penya Y (2011) Machine perception in automation: a call to arms. EURASIP J Embed Syst 2011:1–9

    Article  Google Scholar 

  111. POli R (2012) Discovery of symbolic, neuro-symbolic and neural networks with parallel. In: Artificial neural nets and genetic algorithms: proceedings of the international conference in Norwich, UK, 1997. Springer, p 419

  112. Velik R (2013) Brain-like artificial intelligence for automation–foundations, concepts and implementation examples. BRAIN 4(1–4):26–54

    Google Scholar 

  113. Achler T (2013) Neural networks that perform recognition using generative error may help fill the “neuro-symbolic gap’’. Biol Inspired Cogn Archit 3:6–12

    Google Scholar 

  114. Lima PM (2017) Q-satyrus: Map** neuro-symbolic reasoning into an adiabatic quantum computer. In: NeSy

  115. Shen S, Ramesh S, Shinde S, Roychoudhury A, Saxena P (2018) Neuro-symbolic execution: The feasibility of an inductive approach to symbolic execution. ar**v preprint ar**v:1807.00575

  116. Lieto A, Lebiere C, Oltramari A (2018) The knowledge level in cognitive architectures: current limitations and possible developments. Cogn Syst Res 48:39–55

    Article  Google Scholar 

  117. Wang P (2004) Toward a unified artificial intelligence. In: AAAI Technical Report (1), p 83

  118. Hammer P (2019) Adaptive neuro-symbolic network agent. Springer, Berlin, pp 80–90

    Google Scholar 

  119. Sittón I, Alonso RS, Hernández-Nieves E, Rodríguez-Gonzalez S, Rivas A (2019) Neuro-symbolic hybrid systems for industry 4.0: a systematic map** study. In: Knowledge management in organizations: 14th international conference, KMO 2019, Zamora, Spain, July 15–18, 2019, Proceedings 14. Springer, pp 455–465

  120. Marcus G (2020) The next decade in ai: four steps towards robust artificial intelligence. ar**v preprint ar**v:2002.06177

  121. Hameed HA (2020) Artificial intelligence: What it was, and what it should be? Int J Adv Comput Sci Appl 11(6)

  122. Belle V (2020) Symbolic logic meets machine learning: a brief survey in infinite domains. In: Scalable uncertainty management: 14th international conference, SUM 2020, Bozen-Bolzano, Italy, September 23–25, 2020, Proceedings 14. Springer, pp 3–16

  123. Tiddi I (2020) Directions for explainable knowledge-enabled systems. Knowledge Graphs for eXplainable Artificial intelligence: Foundations Applications and Challenges 47:245

    Google Scholar 

  124. Hanson D, Imran A, Vellanki A, Kanagaraj S (2020) A neuro-symbolic humanlike arm controller for sophia the robot. ar**v preprint ar**v:2010.13983

  125. Franklin NT, Norman KA, Ranganath C, Zacks JM, Gershman SJ (2020) Structured event memory: a neuro-symbolic model of event cognition. Psychol Rev 127(3):327

    Article  Google Scholar 

  126. Di Maio P (2020) Neurosymbolic knowledge representation for explainable and trustworthy ai

  127. Anderson G, Verma A, Dillig I, Chaudhuri S (2020) Neurosymbolic reinforcement learning with formally verified exploration. Adv Neural Inf Process Syst 33:6172–6183

    Google Scholar 

  128. Gaur M, Kursuncu U, Sheth A, Wickramarachchi R, Yadav S (2020) Knowledge-infused deep learning. In: Proceedings of the 31st ACM conference on hypertext and social media, pp 309–310

  129. Santoro A, Lampinen A, Mathewson K, Lillicrap T, Raposo D (2021) Symbolic behaviour in artificial intelligence. ar**v preprint ar**v:2102.03406

  130. Ebrahimi M, Eberhart A, Bianchi F, Hitzler P (2021) Towards bridging the neuro-symbolic gap: deep deductive reasoners. Appl Intell 51:6326–6348

    Article  Google Scholar 

  131. Susskind Z, Arden B, John LK, Stockton P, John EB (2021) Neuro-symbolic ai: An emerging class of ai workloads and their characterization. ar**v preprint ar**v:2109.06133

  132. Alonso RS (2021) Deep symbolic learning and semantics for an explainable and ethical artificial intelligence. In: Ambient intelligence–software and applications: 11th international symposium on ambient intelligence. Springer, pp 272–278

  133. Park K-W, Bu S-J, Cho S-B (2021) Evolutionary optimization of neuro-symbolic integration for phishing url detection. In: Hybrid artificial intelligent systems: 16th international conference, HAIS 2021, Bilbao, Spain, September 22–24, 2021, Proceedings 16. Springer, pp 88–100

  134. Oltramari A, Francis J, Ilievski F, Ma K, Mirzaee R (2021) Generalizable neuro-symbolic systems for commonsense question answering, 294–310

  135. Calvaresi D, Ciatto G, Najjar A, Aydoğan R, Torre L, Omicini A, Schumacher M (2021) Expectation: personalized explainable artificial intelligence for decentralized agents with heterogeneous knowledge. In: Explainable and transparent AI and multi-agent systems: third international workshop, EXTRAAMAS 2021, Virtual Event, May 3–7, 2021, Revised Selected Papers 3. Springer, pp 331–343

  136. Nye M, Tessler M, Tenenbaum J, Lake BM (2021) Improving coherence and consistency in neural sequence models with dual-system, neuro-symbolic reasoning. Adv Neural Inf Process Syst 34:25192–25204

    Google Scholar 

  137. Gaur M, Gunaratna K, Bhatt S, Sheth A (2022) Knowledge-infused learning: a sweet spot in neuro-symbolic ai. IEEE Internet Comput 26(4):5–11

    Article  Google Scholar 

  138. Samsonovich AV (2022) One possibility of a neuro-symbolic integration. In: Biologically inspired cognitive architectures 2021: proceedings of the 12th annual meeting of the BICA Society. Springer, pp 428–437

  139. Dold D, Soler Garrido J, Caceres Chian V, Hildebrandt M, Runkler T (2022) Neuro-symbolic computing with spiking neural networks. In: Proceedings of the international conference on neuromorphic systems 2022, pp 1–4

  140. Chitnis R, Silver T, Tenenbaum JB, Lozano-Perez T, Kaelbling LP (2022) Learning neuro-symbolic relational transition models for bilevel planning. In: 2022 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 4166–4173

  141. Kocoń J, Baran J, Gruza M, Janz A, Kajstura M, Kazienko P, Korczyński W, Miłkowski P, Piasecki M, Szołomicka J (2022) Neuro-symbolic models for sentiment analysis. In: Computational science–ICCS 2022: 22nd international conference, London, UK, June 21–23, 2022, Proceedings, Part II. Springer, pp 667–681

  142. Alon U, Xu F, He J, Sengupta S, Roth D, Neubig G (2022) Neuro-symbolic language modeling with automaton-augmented retrieval. In: International conference on machine learning. PMLR, pp 468–485

  143. Amado LR, Pereira RF, Meneguzzi FR (2023) Robust neuro-symbolic goal and plan recognition. In: Proceedings of the 37th AAAI conference on artificial intelligence (AAAI), 2023, Estados Unidos

  144. Hitzler P, Roth-Berghofer T, Rudolph S (2007) Foundations of artificial intelligence faint-07 workshop at ki 2007. In: Workshop at KI, vol 2007. Citeseer

  145. Garcez AS, Lamb LC, Gabbay DM (2008) Neural-symbolic cognitive reasoning

  146. Komendantskaya E, Broda K, Garcez ASd (2010) Neuro-symbolic representation of logic programs defining infinite sets. ICANN (1) 6352:301–304

    Google Scholar 

  147. Andreasik J, Ciebiera A, Umpirowicz S, Speretta M, Gauch S, Lakkaraju P, Alessandrelli D, Pagano P, Nastasi C, Petracca M et al (2010) Hsi 2010 conference programme may 13

  148. Barcelona CS, Garcez Ad, Lamb L Seventh international workshop on neural-symbolic learning and reasoning

  149. Hatzilygeroudis I, Prentzas J (2011) Combinations of intelligent methods and applications. Springer, Berlin

    Book  Google Scholar 

  150. Achler T (2012) Towards bridging the gap between pattern recognition and symbolic representation within neural networks. In: Workshop on neural-symbolic learning and reasoning, AAAI-2012. Citeseer

  151. Garcez A, Gori M, Hitzler P, Lamb LC (2015) Neural-symbolic learning and reasoning (dagstuhl seminar 14381). In: Dagstuhl Reports, vol. 4. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik

  152. Hatzilygeroudis I, Palade V (2016) 6thinternational workshop on combinations of intelligent methods and applications (cima 2016)

  153. Hatzilygeroudis I, Palade V, Prentzas J (2017) Advances in combining intelligent methods

  154. Hatzilygeroudis I, Palade V (2018) Advances in hybridization of intelligent methods

  155. Hammer P, Agrawal P, Goertzel B, Iklé M (2019) Artificial general intelligence: 12th international conference, AGI 2019, Shenzhen, China, August 6–9, 2019, Proceedings, vol 11654. Springer

  156. Shen S, Shinde S, Ramesh S, Roychoudhury A, Saxena P (2019) Neuro-symbolic execution: Augmenting symbolic execution with neural constraints. In: NDSS

  157. Averkin A (2019) Hybrid intelligent systems based on fuzzy logic and deep learning. Artificial Intelligence: 5th RAAI Summer School, Dolgoprudny, Russia, July 4–7, 2019, Tutorial Lectures, 3–12

  158. Pisano G, Ciatto G, Calegari R, Omicini A (2020) Neuro-symbolic computation for xai: Towards a unified model. In: WOA, vol 1613, p 101

  159. Alam M, Groth P, Hitzler P, Paulheim H, Sack H, Tresp V (2020) Cssa’20: workshop on combining symbolic and sub-symbolic methods and their applications. In: Proceedings of the 29th ACM international conference on information & knowledge management, pp 3523–3524

  160. Benzmüller C, Lomfeld B (2020) Reasonable machines: a research manifesto. In: KI 2020: advances in artificial intelligence: 43rd German conference on AI, Bamberg, Germany, September 21–25, 2020, Proceedings 43. Springer, pp 251–258

  161. Ilkou E, Koutraki M (2020) Symbolic vs sub-symbolic ai methods: Friends or enemies? In: CIKM (Workshops)

  162. Singh G, Mondal S, Bhatia S, Mutharaju R (2021) Neuro-symbolic techniques for description logic reasoning (student abstract). In: Proceedings of the AAAI conference on artificial intelligence, vol 35, pp 15891–15892

  163. Branco R, Branco A, Silva JM, Rodrigues J (2021) Commonsense reasoning: how do neuro-symbolic and neuro-only approaches compare? In: CIKM Workshops

  164. Basu K, Murugesan K, Atzeni M, Kapanipathi P, Talamadupula K, Klinger T, Campbell M, Sachan M, Gupta G (2021) A hybrid neuro-symbolic approach for text-based games using inductive logic programming. Combining learning and reasoning: programming languages, formalisms, and representations

  165. Garcez Ad, Jiménez-Ruiz E (2021) Neural-symbolic learning and reasoning (nesy)

  166. Saha A, Joty S, Hoi SC (2022) Weakly supervised neuro-symbolic module networks for numerical reasoning over text. In: Proceedings of the AAAI conference on artificial intelligence, vol 36, pp 11238–11247

  167. Ahmed K, Teso S, Chang K-W, Broeck G, Vergari A (2022) Semantic probabilistic layers for neuro-symbolic learning. Adv Neural Inf Process Syst 35:29944–29959

    Google Scholar 

  168. Bader S, Hitzler P (2005) Dimensions of neural-symbolic integration—a structured survey. ar**v preprint ar**v:cs/0511042

  169. Kautz H (2022) The third ai summer: Aaai Robert S. Engelmore memorial lecture. AI Mag 43(1):105–125

    Google Scholar 

  170. Browne A, Sun R (2001) Connectionist inference models. Neural Netw 14(10):1331–1355

    Article  Google Scholar 

  171. Cloete I, Zurada JM (2000) Knowledge-based neurocomputing

  172. Hamilton K, Nayak A, Božić B, Longo L (2022) Is neuro-symbolic ai meeting its promises in natural language processing? a structured review. Semantic Web (Preprint), 1–42

  173. Yu D, Yang B, Liu D, Wang H, Pan S (2023) A survey on neural-symbolic learning systems. Neural Netw

  174. Yang C, Chaudhuri S (2022) Safe neurosymbolic learning with differentiable symbolic execution. ar**v preprint ar**v:2203.07671

  175. Shah A, Zhan E, Sun J, Verma A, Yue Y, Chaudhuri S (2020) Learning differentiable programs with admissible neural heuristics. Adv Neural Inf Process Syst 33:4940–4952

    Google Scholar 

  176. Barbin A, Cerutti F, Gerevini AE (2022) Addressing the symbol grounding problem with constraints in neuro-symbolic planning

  177. Zellers R, Holtzman A, Peters M, Mottaghi R, Kembhavi A, Farhadi A, Choi Y (2021) Piglet: language grounding through neuro-symbolic interaction in a 3d world. ar**v preprint ar**v:2106.00188

  178. Borghesani V, Piazza M (2017) The neuro-cognitive representations of symbols: the case of concrete words. Neuropsychologia 105:4–17

    Article  Google Scholar 

  179. Mao J, Gan C, Kohli P, Tenenbaum JB, Wu J (2019) The neuro-symbolic concept learner: Interpreting scenes, words, and sentences from natural supervision. ar**v preprint ar**v:1904.12584

  180. Cunnington D, Law M, Lobo J, Russo A (2024) The role of foundation models in neuro-symbolic learning and reasoning. ar**v preprint ar**v:2402.01889

  181. De Mántaras RL (1991) A distance-based attribute selection measure for decision tree induction. Mach Learn 6:81–92

    Article  Google Scholar 

  182. Valiant LG (1984) Deductive learning. Philos Trans R Soc Lond Ser A Math Phys Sci 312(1522):441–446

    MathSciNet  Google Scholar 

  183. Tiddi I, Schlobach S (2022) Knowledge graphs as tools for explainable machine learning: a survey. Artif Intell 302:103627

    Article  MathSciNet  Google Scholar 

  184. Arulkumaran K, Deisenroth MP, Brundage M, Bharath AA (2017) Deep reinforcement learning: a brief survey. IEEE Signal Process Mag 34(6):26–38

    Article  Google Scholar 

  185. Sutton RS, Barto AG (2018) Reinforcement learning: an introduction

  186. Sætre AS, Ven A (2021) Generating theory by abduction. Acad Manag Rev 46(4):684–701

    Article  Google Scholar 

  187. Al-Ajlan A (2015) The comparison between forward and backward chaining. Int J Mach Learn Comput 5(2):106

    Article  Google Scholar 

  188. Weber L, Minervini P, Münchmeyer J, Leser U, Rocktäschel T (2019) Nlprolog: reasoning with weak unification for question answering in natural language. ar**v preprint ar**v:1906.06187

  189. Zhang B, Zhu J, Su H (2023) Toward the third generation artificial intelligence. Sci China Inf Sci 66(2):1–19

    Article  MathSciNet  Google Scholar 

  190. SKahneman D (2013) Thinking, fast and slow

  191. Kapanipathi P, Abdelaziz I, Ravishankar S, Roukos S, Gray A, Astudillo R, Chang M, Cornelio C, Dana S, Fokoue A, et al (2020) Leveraging abstract meaning representation for knowledge base question answering. ar**v preprint ar**v:2012.01707

  192. Huang J, Li Z, Chen B, Samel K, Naik M, Song L, Si X (2021) Scallop: From probabilistic deductive databases to scalable differentiable reasoning. Adv Neural Inf Process Syst 34:25134–25145

    Google Scholar 

  193. Smullyan RM (1995) First-order logic

  194. Andrews PB (2013) An introduction to mathematical logic and type theory: to truth through proof, vol 27

  195. Garcez Ad, Bader S, Bowman H, Lamb LC, Penning L, Illuminoo B, Poon H, Zaverucha CG (2022) Neural-symbolic learning and reasoning: a survey and interpretation. Neuro-Symb Artif Intell State Art 342(1):327

    Google Scholar 

  196. Ehrlinger L, Wöß W (2016) Towards a definition of knowledge graphs. SEMANTiCS (Posters, Demos, SuCCESS) 48(1–4):2

    Google Scholar 

  197. Ji S, Pan S, Cambria E, Marttinen P, Philip SY (2021) A survey on knowledge graphs: representation, acquisition, and applications. IEEE Trans Neural Netw Learn Syst 33(2):494–514

    Article  MathSciNet  Google Scholar 

  198. Sun R (2002) Hybrid systems and connectionist implementationalism. Encyclop Cogn Sci 1:697–703

    Google Scholar 

  199. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space. ar**v preprint ar**v:1301.3781

  200. Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp 1532–1543

  201. Burattini E, De Gregorio M, Tamburrin G (1999) Pictorial and verbal components in artificial intelligence explanations. In: Vision: the approach of biophysics and neurosciences: proceedings of the international school of biophysics, Casamicciola, Napoli, Italy, 11-16 October 1999, vol 11, p 471

  202. Hitzler P, Seda AK (2003) Continuity of semantic operators in logic programming and their approximation by artificial neural networks. In: KI 2003: advances in artificial intelligence: 26th annual German conference on AI, KI 2003, Hamburg, Germany, September 15-18, 2003. Proceedings 26. Springer, pp 355–369

  203. Coraggio P, De Gregorio M, Forastiere M (2008) Robot navigation based on neurosymbolic reasoning over landmarks. Int J Pattern Recognit Artif Intell 22(05):1001–1014

    Article  Google Scholar 

  204. Staffa M, Rossi S, De Gregorio M, Burattini E (2011) Thresholds tuning of a neuro-symbolic net controlling a behavior-based robotic system. In: ESANN

  205. Price KV (2013) Differential evolution. Handbook of Optimization: From Classical to Modern Approach, 187–214

  206. Hasoon SO, Jasim YA (2013) Diagnosis windows problems based on hybrid intelligence systems. J Eng Sci Technol 8(5):566–578

    Google Scholar 

  207. Golovko V, Kroshchanka A, Kovalev M, Taberko V, Ivaniuk D (2020) Neuro-symbolic artificial intelligence: application for control the quality of product labeling. In: Open semantic technologies for intelligent system: 10th international conference, OSTIS 2020, Minsk, Belarus, February 19–22, 2020, Revised Selected Papers. Springer, pp 81–101

  208. Wang F-Y, Zhang JJ, Zheng X, Wang X, Yuan Y, Dai X, Zhang J, Yang L (2016) Where does alphago go: from church-turing thesis to alphago thesis and beyond. IEEE/CAA J Autom Sin 3(2):113–120

    Article  Google Scholar 

  209. Świechowski M, Godlewski K, Sawicki B, Mańdziuk J (2023) Monte Carlo tree search: a review of recent modifications and applications. Artif Intell Rev 56(3):2497–2562

    Article  Google Scholar 

  210. Ultsch A (2000) The neuro-data-mine. In: Symposia on neural computation (NC’2000), Berlin, Germany

  211. Corchado JM, Lees B (2001) Adaptation of cases for case based forecasting with neural network support. In: Soft computing in case based reasoning, pp 293–319

  212. Fdez-Riverola F, Corchado JM, Torres JM (2002) Neuro-symbolic system for forecasting red tides. In: Artificial intelligence and cognitive science: 13th Irish conference, AICS 2002 Limerick, Ireland, September 12–13, 2002 Proceedings. Springer, pp 45–52

  213. Neagu C-D, Avouris N, Kalapanidas E, Palade V (2002) Neural and neuro-fuzzy integration in a knowledge-based system for air quality prediction. Appl Intell 17(2):141

    Article  Google Scholar 

  214. Corchado Rodríguez JM, Aiken J, Rees N et al (2003) Neuro-symbolic reasoning system for modeling complex behaviours

  215. Fdez-Riverola F, Corchado JM (2003) Fsfrt: Forecasting system for red tides: a hybrid autonomous ai model. Appl Artif Intell 17(10):955–982

    Article  Google Scholar 

  216. Policastro CA, Carvalho AC, Delbem AC (2003) Hybrid approaches for case retrieval and adaptation. In: KI 2003: Advances in Artificial Intelligence: 26th Annual German Conference on AI, KI 2003, Hamburg, Germany, September 15-18, 2003. Proceedings 26. Springer, pp 297–311

  217. Fernández-Riverola F, Corchado JM (2004) Employing tsk fuzzy models to automate the revision stage of a cbr system. In: Current topics in artificial intelligence: 10th conference of the Spanish association for artificial intelligence, CAEPIA 2003, and 5th Conference on Technology Transfer, TTIA 2003, San Sebastian, Spain, November 12-14, 2003. Revised Selected Papers. Springer, pp 302–311

  218. Corchado JM, Borrajo ML, Pellicer MA, Yáñez JC (2005) Neuro-symbolic system for business internal control. In: Advances in data mining: applications in image mining, medicine and biotechnology, management and environmental control, and telecommunications; 4th industrial conference on data mining, ICDM 2004, Leipzig, Germany, July 4-7, 2004, Revised Selected Papers 4. Springer, pp 1–10

  219. Prentzas J, Hatzilygeroudis I, Michail O (2008) Improving the accuracy of neuro-symbolic rules with case-based reasoning. In: Proceedings of the first international workshop on combinations of intelligent methods and applications in conjunction with 18th European conference on artificial intelligence, pp 49–54

  220. Newman CBD (1998) Uci repository of machine learning databases. http://www.ics.uci.edu/mlearn/MLRepository.html

  221. Borrajo ML, Laza R, Corchado JM (2008) A complex case-based advisor. Appl Artif Intell 22(5):377–406

    Article  Google Scholar 

  222. Prentzas J, Hatzilygeroudis I (2011) Case-based reasoning integrations: Approaches and applications. Case-based reasoning: processes, suitability and applications, 1–28

  223. Hatzilygeroudis I, Prentzas J (2013) Fuzzy and neuro-symbolic approaches in personal credit scoring: assessment of bank loan applicants. In: Innovations in Intelligent Machines-4, p 319

  224. Bach J, Herger P (2015) Request confirmation networks for neuro-symbolic script execution. In: CoCo@ NIPS

  225. Bologna G, Hayashi Y (2017) Characterization of symbolic rules embedded in deep dimlp networks: a challenge to transparency of deep learning. J Artif Intell Soft Comput Res 7(4):265–286

    Article  Google Scholar 

  226. Kraetzschmar G, Sablatnög S, Enderle S, Palm G (2000) Application of neurosymbolic integration for environment modelling in mobile robots. In: Hybrid neural systems. Springer, pp 387–401

  227. Burattini E, Coraggio P, De Gregorio M, Ripa B (2003) Agent wisard: go and catch that image. In: Proc. First IAPR TC3 Workshop, Florence, Italy, vol 89, p 95

  228. Grieco BP, Lima PM, De Gregorio M, França FM (2010) Producing pattern examples from “mental’’ images. Neurocomputing 73(7–9):1057–1064

    Article  Google Scholar 

  229. Coraggio P, De Gregorio M (2007) A neurosymbolic hybrid approach for landmark recognition and robot localization. In: Advances in brain, vision, and artificial intelligence: second international symposium, BVAI 2007, Naples, Italy, October 10-12, 2007. Proceedings 2. Springer, pp 566–575

  230. De Gregorio M (2008) An intelligent active video surveillance system based on the integration of virtual neural sensors and bdi agents. IEICE Trans Inf Syst 91(7):1914–1921

    Article  Google Scholar 

  231. Qadeer N, Velik R, Zucker G, Boley H (2009) Knowledge representation for a neuro-symbolic network in home care risk identification. In: 2009 7th IEEE international conference on industrial informatics. IEEE, pp 277–282

  232. Dietrich D, Bruckner D, Zucker G, Muller B, Tmej A (2009) Psychoanalytical model for automation and robotics. In: AFRICON 2009. IEEE, pp 1–8

  233. Barbosa R, Cardoso DO, Carvalho D, França FM (2017) A neuro-symbolic approach to gps trajectory classification. ESANN

  234. Barbosa R, Cardoso DO, Carvalho D, Franca FM (2018) Weightless neuro-symbolic gps trajectory classification. Neurocomputing 298:100–108

    Article  Google Scholar 

  235. Yi K, Wu J, Gan C, Torralba A, Kohli P, Tenenbaum J (2018) Neural-symbolic vqa: Disentangling reasoning from vision and language understanding. In: Advances in neural information processing systems, vol 31

  236. Lavrac N, Dzeroski S (1994) Inductive logic programming. In: WLP. Springer, pp 146–160

  237. Hatzilygeroudis I, Prentzas J (2000) Neurules: improving the performance of symbolic rules. Int J Artif Intell Tools 9(01):113–130

    Article  Google Scholar 

  238. Osório F, Amy B, Cechin A (2001) Hybrid machine learning tools: Inss-a neuro-symbolic system for constructive machine learning. Deep fusion of computational and symbolic processing, 121–144

  239. Garcez Ad, Broda K, Gabbay DM (2001) Symbolic knowledge extraction from trained neural networks: a sound approach. Artif Intell 125(1–2):155–207

    Article  MathSciNet  Google Scholar 

  240. Prentzas J, Hatzilygeroudis I, Garofalakis J (2002) A web-based intelligent tutoring system using hybrid rules as its representational basis. In: Intelligent tutoring systems: 6th international conference, ITS 2002 Biarritz, France and San Sebastian, Spain, June 2–7, 2002 Proceedings 6. Springer, pp 119–128

  241. Salgado GR, Amy B (2003) Neuro-symbolic hybrid system for treatment of gradual rules. Neural Information Processing—Letters and Reviews 1(2)

  242. Prentzas N, Nicolaides A, Kyriacou E, Kakas A, Pattichis C (2019) Integrating machine learning with symbolic reasoning to build an explainable ai model for stroke prediction. In: 2019 IEEE 19th international conference on bioinformatics and bioengineering (BIBE). IEEE, pp 817–821

  243. Thrun SB, Bala JW, Bloedorn E, Bratko I, Cestnik B, Cheng J, De Jong KA, Dzeroski S, Fisher DH, Fahlman SE, et al (1991) The monk’s problems: A performance comparison of different learning algorithms. Technical report

  244. Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, Wang L, Li C, Sun M (2020) Graph neural networks: a review of methods and applications. AI Open 1:57–81

    Article  Google Scholar 

  245. Omlin CW, Snyders S (2003) Inductive bias strength in knowledge-based neural networks: application to magnetic resonance spectroscopy of breast tissues. Artif Intell Med 28(2):121–140

    Article  Google Scholar 

  246. Bologna G (2003) A model for single and multiple knowledge based networks. Artif Intell Med 28(2):141–163

    Article  Google Scholar 

  247. Obot OU, Uzoka F-ME (2009) A framework for application of neuro-case-rule base hybridization in medical diagnosis. Appl Soft Comput 9(1):245–253

    Article  Google Scholar 

  248. Boulahia J, Smirani L, KSA MA (2015) Experiments of a neuro symbolic hybrid learning system with incomplete data

  249. Ghosh J, Taha I (2018) A neuro-symbolic hybrid intelligent architecture with. In: Recent advances in artificial neural networks, 1

  250. Bhatia S, Kohli P, Singh R (2018) Neuro-symbolic program corrector for introductory programming assignments. In: Proceedings of the 40th international conference on software engineering, pp 60–70

  251. Souici-Meslati L, Sellami M (2004) A hybrid approach for arabic literal amounts recognition. Arab J Sci Eng 29

  252. Perrier M, Kalwa J (2005) Intelligent diagnosis for autonomous underwater vehicles using a neuro-symbolic system in a distributed architecture. In: Europe Oceans 2005, vol 1. IEEE, pp 350–355

  253. Sánchez VGC, Villegas OOV, Salgado GR, Dominguez H (2008) Quality inspection of textile artificial textures using a neuro-symbolic hybrid system methodology. WSEAS Trans Comput 12:1899–1905

    Google Scholar 

  254. Velik R, Boley H (2010) Neurosymbolic alerting rules. IEEE Trans Ind Electron 57(11):3661–3668

    Article  Google Scholar 

  255. Komendantskaya E, Zhang Q (2011) Sherlock-a neural network software for automated problem solving. In: Proceedings of seventh international workshop on neural-symbolic learning and reasoning

  256. Saikia S, Vig L, Srinivasan A, Shroff G, Agarwal P, Rawat R (2016) Neuro-symbolic eda-based optimisation using ilp-enhanced dbns. ar**v preprint ar**v:1612.06528

  257. Kursuncu U, Gaur M, Sheth A (2019) Knowledge infused learning (k-il): Towards deep incorporation of knowledge in deep learning. ar**v preprint ar**v:1912.00512

  258. Khan MJ, Curry E (2020) Neuro-symbolic visual reasoning for multimedia event processing: Overview, prospects and challenges. In: CIKM (Workshops)

  259. Kapanipathi P, Abdelaziz I, Ravishankar S, Roukos S, Gray A, Astudillo R, Chang M, Cornelio C, Dana S, Fokoue A, et al (2020) Question answering over knowledge bases by leveraging semantic parsing and neuro-symbolic reasoning. ar**v preprint ar**v:2012.01707

  260. Yang Z, Ishay A, Lee J (2020) Neurasp: embracing neural networks into answer set programming. In: 29th international joint conference on artificial intelligence (IJCAI 2020)

  261. Siyaev A, Jo G-S (2021) Neuro-symbolic speech understanding in aircraft maintenance metaverse. IEEE Access 9:154484–154499

    Article  Google Scholar 

  262. Stammer W, Schramowski P, Kersting K (2021) Right for the right concept: revising neuro-symbolic concepts by interacting with their explanations. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 3619–3629

  263. Kimura D, Ono M, Chaudhury S, Kohita R, Wachi A, Agravante DJ, Tatsubori M, Munawar A, Gray A (2021) Neuro-symbolic reinforcement learning with first-order logic. ar**v preprint ar**v:2110.10963

  264. Evans R, Bošnjak M, Buesing L, Ellis K, Pfau D, Kohli P, Sergot M (2021) Making sense of raw input. Artif Intell 299:103521

    Article  MathSciNet  Google Scholar 

  265. Mitchener L, Tuckey D, Crosby M, Russo A (2022) Detect, understand, act: a neuro-symbolic hierarchical reinforcement learning framework. Mach Learn 111(4):1523–1549

    Article  MathSciNet  Google Scholar 

  266. Alshahrani M, Khan MA, Maddouri O, Kinjo AR, Queralt-Rosinach N, Hoehndorf R (2017) Neuro-symbolic representation learning on biological knowledge graphs. Bioinformatics 33(17):2723–2730

    Article  Google Scholar 

  267. Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: Online learning of social representations. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, pp 701–710

  268. Agibetov A, Samwald M (2018) Fast and scalable learning of neuro-symbolic representations of biomedical knowledge. ar**v preprint ar**v:1804.11105

  269. Wu L, Fisch A, Chopra S, Adams K, Bordes A, Weston J (2018) Starspace: Embed all the things! In: Proceedings of the AAAI conference on artificial intelligence, vol 32

  270. Bianchi F, Palmonari M, Hitzler P, Serafini L (2019) Complementing logical reasoning with sub-symbolic commonsense. In: Rules and reasoning: third international joint conference, RuleML+ RR 2019, Bolzano, Italy, September 16–19, 2019, Proceedings 3. Springer, pp 161–170

  271. Bianchi F, Palmonari M, Nozza D (2018) Towards encoding time in text-based entity embeddings. In: The semantic web–ISWC 2018: 17th international semantic web conference, Monterey, CA, USA, October 8–12, 2018, Proceedings, Part I 17. Springer, pp 56–71

  272. Oltramari A, Francis J, Henson C, Ma K, Wickramarachchi R (2020) Neuro-symbolic architectures for context understanding. ar**v preprint ar**v:2003.04707

  273. Singh P, Lin T, Mueller ET, Lim G, Perkins T, Li Zhu W (2002) Open mind common sense: knowledge acquisition from the general public. In: On the move to meaningful internet systems 2002: CoopIS, DOA, and ODBASE: confederated international conferences CoopIS, DOA, and ODBASE 2002 Proceedings. Springer, pp 1223–1237

  274. Wang Q, Mao Z, Wang B, Guo L (2017) Knowledge graph embedding: a survey of approaches and applications. IEEE Trans Knowl Data Eng 29(12):2724–2743

    Article  Google Scholar 

  275. Doldy D, Garridoy JS (2021) An energy-based model for neuro-symbolic reasoning on knowledge graphs. In: 2021 20th IEEE international conference on machine learning and applications (ICMLA). IEEE, pp 916–921

  276. Nickel M, Tresp V, Kriegel H-P (2011) A three-way model for collective learning on multi-relational data. In: Icml, vol 11, pp 3104482–3104584

  277. Sun K, Rayudu H, Pujara J (2021) A hybrid probabilistic approach for table understanding. In: Proceedings of the AAAI conference on artificial intelligence, vol 35, pp 4366–4374

  278. Kimmig A, Bach S, Broecheler M, Huang B, Getoor L (2012) A short introduction to probabilistic soft logic. In: Proceedings of the NIPS workshop on probabilistic programming: foundations and applications, pp 1–4

  279. Gol MG, Pujara J, Szekely P (2019) Tabular cell classification using pre-trained cell embeddings. In: 2019 IEEE international conference on data mining (ICDM). IEEE, pp 230–239

  280. Ding M, Chen Z, Du T, Luo P, Tenenbaum J, Gan C (2021) Dynamic visual reasoning by learning differentiable physics models from video and language. Adv Neural Inf Process Syst 34:887–899

    Google Scholar 

  281. Ma K, Francis J, Lu Q, Nyberg E, Oltramari A (2019) Towards generalizable neuro-symbolic systems for commonsense question answering. ar**v preprint ar**v:1910.14087

  282. Sundar LKS, Muzik O, Buvat I, Bidaut L, Beyer T (2021) Potentials and caveats of ai in hybrid imaging. Methods 188:4–19

    Article  Google Scholar 

  283. Kang T, Turfah A, Kim J, Perotte A, Weng C (2021) A neuro-symbolic method for understanding free-text medical evidence. J Am Med Inform Assoc 28(8):1703–1711

    Article  Google Scholar 

  284. Yin P, Neubig G (2017) A syntactic neural model for general-purpose code generation. ar** the debate. Big Data Soc 3(2):2053951716679679

    Article  Google Scholar 

  285. Rudin C (2019) Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Mach Intell 1(5):206–215

    Article  Google Scholar 

  286. Kazim E, Denny DMT, Koshiyama A (2021) Ai auditing and impact assessment: according to the UK information commissioner’s office. AI Ethics 1:301–310

    Article  Google Scholar 

  287. Jobin A, Ienca M, Vayena E (2019) The global landscape of ai ethics guidelines. Nat Mach Intell 1(9):389–399

    Article  Google Scholar 

  288. Tamang MD, Shukla VK, Anwar S, Punhani R (2021) Improving business intelligence through machine learning algorithms. In: 2021 2nd International conference on intelligent engineering and management (ICIEM). IEEE, pp 63–68

Download references

Acknowledgments

This work is supported by the “ADI 2022” project funded by the IDEX Paris-Saclay, ANR-11-IDEX-0003-02.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation, B.P.B., A.R.C., T.P.S. and R.T.; methodology, B.P.B., A.R.C. and R.T.; software, B.P.B., A.R.C. and R.T.; validation, B.P.B., A.R.C., T.P.S. and R.T.; formal analysis, B.P.B., A.R.C. and R.T.; investigation, B.P.B., A.R.C. and R.T.; resources, B.P.B., A.R.C. and R.T.; data curation, B.P.B., A.R.C. and R.T.; writing—original draft preparation, B.P.B.; writing—review and editing, B.P.B., T.P.S., A.R.C. and R.T.; visualisation, B.P.B.; supervision, A.R.C. and R.T.; project administration, B.P.B., A.R.C., T.P.S. and R.T.; funding acquisition, R.T. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Bikram Pratim Bhuyan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The authors consent to the publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhuyan, B.P., Ramdane-Cherif, A., Tomar, R. et al. Neuro-symbolic artificial intelligence: a survey. Neural Comput & Applic (2024). https://doi.org/10.1007/s00521-024-09960-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00521-024-09960-z

Keywords

Navigation