Log in

Training task planning-based adaptive assist-as-needed control for upper limb exoskeleton using neural network state observer

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

To improve the motivation and enthusiasm of subjects during active rehabilitation training, this paper proposes a novel training task planning-based adaptive assist-as-needed (TTP-AAAN) control algorithm for an upper limb exoskeleton. The overall controller contains an outer control loop to determine the required assistive force, and an inner control loop to drive the exoskeleton to track subject motion and to provide desired assistive force obtained from the outer control loop. In the outer control loop, a motion intention and task performance evaluation (MITPE) strategy is established to learn the motor capability of the subject. Based on the obtained evaluation result, the radius and frequency of multi-periodic trajectory tracking task, and the gain of the assistive force are adaptively adjusted by using the adaptive central pattern generator (ACPG) algorithm. Then, in the inner control loop, an asymmetric barrier Lyapunov function-based adaptive output feedback (ABLF-AOF) controller, in combination with a neural network (NN) state observer, is developed. The exoskeleton tracking errors are constrained by the asymmetric barrier Lyapunov function, and the state variables and uncertainty terms of the exoskeleton are simultaneously estimated by the NN state observer. Experiments are carried out with an upper limb exoskeleton to demonstrate the effectiveness of the proposed control strategy. The experimental results show that the developed control scheme can provide assistance and achieve task parameter adaption for the subjects with different motion patterns. In addition, the proposed controller has better training performance than task performance-based adaptive velocity assist-as-needed (AAN) controller and minimal AAN controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Wu QC, Chen Y (2023) Adaptive cooperative control of a soft elbow rehabilitation exoskeleton based on improved joint torque estimation. Mech Syst Signal Process 184:109748

    Article  Google Scholar 

  2. Ayas MS, Altas IH (2017) Fuzzy logic based adaptive admittance control of a redundantly actuated ankle rehabilitation robot. Control Eng Pract 59:44–54

    Article  Google Scholar 

  3. De Oliveira AC, Sulzer JS, Deshpande AD (2021) Assessment of upper-extremity joint angles using harmony exoskeleton. IEEE Trans Neural Syst Rehabil Eng 29:916–925

    Article  Google Scholar 

  4. Agarwal P, Deshpande AD (2017) Subject-specific assist-as-needed controllers for a hand exoskeleton for rehabilitation. IEEE Trans Robot Autom Lett 3(1):508–515

    Article  Google Scholar 

  5. **ong XF, Do CD, Manoonpong P (2022) Learning-based multifunctional elbow exoskeleton control. IEEE Trans Indus Electron 69(9):9216–9224

    Article  Google Scholar 

  6. Wu QC, Wang XS, Chen B, Wu HT (2018) Development of a minimal-intervention-based admittance control strategy for upper extremity rehabilitation exoskeleton. IEEE Trans Syst Man Cyb Sys. 48(6):1005–1016

    Article  Google Scholar 

  7. Zhang GW, Wang J, Yang P, Guo SJ (2022) A learning control scheme for upper-limb exoskeleton via adaptive sliding mode technique. Mechatronics 86:102832

    Article  Google Scholar 

  8. Han SS, Wang HP, Tian Y, Christov N (2020) Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton. ISA Trans 97:171–181

    Article  Google Scholar 

  9. Wang HP, Xu H, Tian Y, Tang H (2020) \(\alpha \)-Variable adaptive model free control of iReHave upper-limb exoskeleton. Adv Eng Soft 148:102872

    Article  Google Scholar 

  10. Asl HJ, Yamashita M, Narikiyo T, Kawanishi M (2020) Field-based assist-as-needed control schemes for rehabilitation robots. IEEE/ASME Trans Mechatron 25(4):2100–2111

    Article  Google Scholar 

  11. Zhang YF, Li S, Nolan KJ, Nolan D (2022) Sha** individualized impedance landscapes for gait training via reinforcement learning. IEEE Trans Med Robot Bio 4(1):194–205

    Article  Google Scholar 

  12. Wolbrecht ET, Chan V, Reinkensmeyer DJ, Bobrow JE (2008) Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng 16(3):286–297

    Article  Google Scholar 

  13. Gui K, Tan UX, Liu HH, Zhang DG (2020) Electromyography-driven progressive assist-as-needed control for lower limb exoskeleton. IEEE Trans Med Robot Bio 2(1):50–58

    Article  Google Scholar 

  14. Teramae T, Noda T, Morimoto J (2017) EMG-based model predictive control for physical human Crobot interaction: application for assist-as-needed control. IEEE Trans Robot Autom Lett 3(1):210–217

    Article  Google Scholar 

  15. Guo YD, Wang HP, Tian YT, Xu JZ (2022) Position/force evaluation-based assist-as-needed control strategy design for upper limb rehabilitation exoskeleton. Neural Com Appl. https://doi.org/10.1007/s00521-022-07180-x

    Article  Google Scholar 

  16. Miao Q, Li ZJ, Chu K, Liu YD, Peng YX, **e SQ, Zhang MM (2021) Performance-based iterative learning control for task-oriented rehabilitation: a pilot study in robot-assisted bilateral training. IEEE Trans Cognitive Develop Syst. https://doi.org/10.1109/TCDS.2021.3072096

    Article  Google Scholar 

  17. Pehlivan AU, Losey DP, O’Malley MK (2015) Minimal assist-as-needed controller for upper limb robotic rehabilitation. IEEE Trans Robot 32(1):113–124

    Article  Google Scholar 

  18. Goya T, Hussain S, Martinez-Marroquin E, Brown NAT, Jamwal PK (2022) Impedance control of a wrist rehabilitation robot based on autodidact stiffness learning. IEEE Trans Med Robot Bio 4(3):796–806

    Article  Google Scholar 

  19. Naghavi N, Akbarzadeh A, Tahamipour-Z SM, Kardan I (2022) Assist-as-needed control of a hip exoskeleton based on a novel strength index. Robot Auton Syst 134:103667

    Article  Google Scholar 

  20. Zhong B, Cao J, Guo K, McDaid A, Peng YX, Miao Q, **e SQ, Zhang MM (2020) Fuzzy logic compliance adaptation for an assist-as-needed controller on the gait rehabilitation exoskeleton (GAREX). Robot Auton Syst 133:103642

    Article  Google Scholar 

  21. dos Santos WM, Siqueira AAG (2019) Optimal impedance via model predictive control for robot-aided rehabilitation. Control Eng Pract 93:104177

    Article  Google Scholar 

  22. Oujamaa L, Relave I, Froger J, Mottet D, Pelissier J-Y (2009) Rehabilitation of arm function after stroke. Ann Phys Rehabil Med. 52(3):269–293

    Article  Google Scholar 

  23. Guo YD, Wang HP, Tian YT, Caldwell DG (2022) Task performance-based adaptive velocity assist-as-needed control for an upper limb exoskeleton. Biomed Signal Process Control 73:103474

    Article  Google Scholar 

  24. Rossa C, Najafi M, Tavakoli M, Adams K (2021) Robotic rehabilitation and assistance for individuals with movement disorders based on a kinematic model of the upper limb. IEEE Trans Med Robot Bio 3(1):190–203

    Article  Google Scholar 

  25. Chen G, Qi P, Guo Z, Yu HY (2016) Gait-event-based synchronization method for gait rehabilitation robots via a bioinspired adaptive oscillator. IEEE Trans Biomed Eng 64(6):1345–1356

    Article  Google Scholar 

  26. Wang C, Peng L, Hou ZG (2022) A control framework for adaptation of training task and robotic assistance for promoting motor learning with an upper limb rehabilitation robot. IEEE Trans Syst Man Cyb Sys. 52(12):7737–7747

    Article  Google Scholar 

  27. Brahmi B, Driscoll M, Bojairami IKE, Saad M, Brahmi A (2021) Novel adaptive impedance control for exoskeleton robot for rehabilitation using a nonlinear time-delay disturbance observer. ISA Trans 108:381–392

    Article  Google Scholar 

  28. Wu XY, Li ZJ, Kan Z, Gao HB (2019) Reference trajectory resha** optimization and control of robotic exoskeletons for human Crobot co-manipulation. IEEE Trans Cyb 50(8):3740–3751

    Article  Google Scholar 

  29. Masud N, Smith C, Isaksson M (2018) Disturbance observer based dynamic load torque compensator for assistive exoskeletons. Mechatronics 54:78–93

    Article  Google Scholar 

  30. Wen Y, Rosen J (2013) Neural PID control of robot manipulators with application to an upper limb exoskeleton. IEEE Trans Cyb 43(2):673–684

    Article  Google Scholar 

  31. Han SS, Wang HP, Tian Y (2020) A linear discrete-time extended state observer-based intelligent PD controller for a 12 DOFs lower limb exoskeleton LLE-RePA. Mech Syst Signal Process 138:106547

    Article  Google Scholar 

  32. Wang Y, Wang HP, Tian Y (2021) Nonlinear disturbance observer based flexible-boundary prescribed performance control for a lower limb exoskeleton. Int J Syst Sci 52(15):3176–3189

    Article  Google Scholar 

  33. Stroppa F, Marcheschi S, Mastronicola N, Loconsole C, Frisoli A (2017) Online adaptive assistance control in robot-based neurorehabilitation therapy. In: 2017 International conference on rehabilitation robotics (ICORR), London, QEII, UK, 628-633

  34. Lugo-Villeda LI, Frisoli A, Bergamasco M, Parra-Vega V (2009) Robust tracking of the light-exoskeleton for arm rehabilitation tasks. IFAC Proceed 42(16):663–668

    Article  Google Scholar 

  35. Zhuang Y, Leng Y, Zhou J, Song R, Li L, Su SW (2020) Voluntary control of an ankle joint exoskeleton by able-bodied individuals and stroke survivors using EMG-based admittance control scheme. IEEE Trans Biomed Eng 68(2):695–705

    Article  Google Scholar 

  36. Sharifi M, Mehr JK, Mushahwar VK, Tavakoli M (2022) Autonomous locomotion trajectory sha** and nonlinear control for lower limb exoskeletons. IEEE/ASME Trans Mechatron 27(2):645–655

    Article  Google Scholar 

  37. Rahimi HN, Howard I, Cui L (2018) Neural impedance adaption for assistive human-robot interaction. Neurocomputing 290:50–59

    Article  Google Scholar 

  38. Zhang G, Yang P, Wang J, Sun J (2018) Multivariable finite-time control of 5 DOF upper-limb exoskeleton based on linear extended observer. IEEE Access 6:43213–43221

    Article  Google Scholar 

  39. Nguyen V-C, Vo A-T, Kang H-J (2019) Continuous PID sliding mode control based on neural third order sliding mode observer for robotic manipulators. In: International conference on intelligent computing (ICIC) 2019: 167–178

  40. Zhang T, Xu Z, Li J, Zhang H, Gerada C (2020) A third-order super-twisting extended state observer for dynamic performance enhancement of sensorless IPMSM drives. IEEE Trans Ind Electron 67(7):5948–5958

    Article  Google Scholar 

  41. He W, Yin Z, Sun CY (2016) Adaptive neural network control of a marine vessel with constraints using the asymmetric barrier Lyapunov function. IEEE Trans Cybern 47(7):1641–1651

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 62173182, 61773212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao** Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Guo, Y., Wang, H. et al. Training task planning-based adaptive assist-as-needed control for upper limb exoskeleton using neural network state observer. Neural Comput & Applic (2024). https://doi.org/10.1007/s00521-024-09922-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00521-024-09922-5

Keywords

Navigation