Log in

UAV path planning in mountain areas based on a hybrid parallel compact arithmetic optimization algorithm

  • S.I.: Hybrid Approaches to Nature-inspired Optimization Algorithms and Their Applications
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Unmanned Aerial Vehicle (UAV) path planning is one of the core components of its entire autonomous control system. The main challenge lies in efficiently obtaining an optimal flight route in complex environments, especially in mountain areas. To address this, we propose a novel version of arithmetic optimization algorithm (AOA), named parallel and compact AOA (PCAOA). In PCAOA, the compact technique can save the memory of UAV and shorten the calculation time, and the parallel technique can quicken the convergence speed and improve the solution accuracy. In addition, the flight path generated by PCAOA is smoothed with cubic B-spline curves, making the path suitable for a UAV. The performance of PCAOA is demonstrated on 23 benchmark functions. Experimental results show that PCAOA achieves competitive results. Finally, the simulation studies are conducted to verify that PCAOA can successfully acquire a feasible and effective route in different mountain areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Radoglou-Grammatikis P, Sarigiannidis P, Lagkas T, Moscholios I (2020) A compilation of UAV applications for precision agriculture. Comput Netw 172:107148. https://doi.org/10.1016/j.comnet.2020.107148

    Article  Google Scholar 

  2. Torresan C, Berton A, Carotenuto F, Di Gennaro SF, Gioli B, Matese A, Miglietta F, Vagnoli C, Zaldei A, Wallace L (2017) Forestry applications of UAVs in Europe: a review. Int J Remote Sens 38(8–10):2427–2447. https://doi.org/10.1080/01431161.2016.1252477

    Article  Google Scholar 

  3. Liu H, Chen Q, Pan N, Sun Y, An Y, Pan D (2021) UAV stocktaking task-planning for industrial warehouses based on the improved hybrid differential evolution algorithm. IEEE Trans Indus Inform 18(1):582–591. https://doi.org/10.1109/TII.2021.3054172

    Article  Google Scholar 

  4. Zhang Z, Li J, Wang J (2018) Sequential convex programming for nonlinear optimal control problems in UAV path planning. Aerosp Sci Technol 76:280–290. https://doi.org/10.1016/j.ast.2018.01.040

    Article  Google Scholar 

  5. Ait Saadi A, Soukane A, Meraihi Y, Benmessaoud Gabis A, Mirjalili S, Ramdane-Cherif A (2022) Uav path planning using optimization approaches: a survey. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-022-09742-7

    Article  Google Scholar 

  6. Puente-Castro A, Rivero D, Pazos A, Fernandez-Blanco E (2021) A review of artificial intelligence applied to path planning in UAV swarms. Neural Comput Appl. https://doi.org/10.1007/s00521-021-06569-4

    Article  Google Scholar 

  7. Nikranjbar A, Haidari M, Atai AA (2018) Adaptive sliding mode tracking control of mobile robot in dynamic environment using artificial potential fields. J Comput Robot 11(1):1–14. https://doi.org/10.1109/CCDC.2019.8832832

    Article  Google Scholar 

  8. Bhattacharya P, Gavrilova ML (2008) Roadmap-based path planning-using the voronoi diagram for a clearance-based shortest path. IEEE Robot Autom Magaz 15(2):58–66. https://doi.org/10.1109/MRA.2008.921540

    Article  Google Scholar 

  9. Meng L, Qinpeng S, Mengmei Z (2019) Uav 3-dimension flight path planning based on improved rapidly-exploring random tree. In: 2019 Chinese Control and Decision Conference (CCDC), pp. 921–925. IEEE. https://doi.org/10.1109/CCDC.2019.8832832

  10. Aggarwal S, Kumar N (2020) Path planning techniques for unmanned aerial vehicles: a review, solutions, and challenges. Comput Commun 149:270–299. https://doi.org/10.1016/j.comcom.2019.10.014

    Article  Google Scholar 

  11. Farid G, Cocuzza S, Younas T, Razzaqi AA, Wattoo WA, Cannella F, Mo H (2022) Modified a-star (a*) approach to plan the motion of a quadrotor UAV in three-dimensional obstacle-cluttered environment. Appl Sci 12(12):5791. https://doi.org/10.3390/app12125791

    Article  Google Scholar 

  12. Kang M, Liu Y, Ren Y, Zhao Y, Zheng Z (2017) An empirical study on robustness of uav path planning algorithms considering position uncertainty. In: 2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), pp. 1–6. IEEE. https://doi.org/10.1109/ISKE.2017.8258825

  13. Ahmed S, Mohamed A, Harras K, Kholief M, Mesbah S (2016) Energy efficient path planning techniques for uav-based systems with space discretization. In: 2016 IEEE Wireless Communications and Networking Conference, pp. 1–6 IEEE. https://doi.org/10.1109/WCNC.2016.7565126

  14. Saeed RA, Omri M, Abdel-Khalek S, Ali ES, Alotaibi MF (2022) Optimal path planning for drones based on swarm intelligence algorithm. Neural Comput Appl 34(12):10133–10155. https://doi.org/10.1007/s00521-022-06998-9

    Article  Google Scholar 

  15. Guo W, Chen M, Wang L, Mao Y, Wu Q (2017) A survey of biogeography-based optimization. Neural Comput Appl 28(8):1909–1926. https://doi.org/10.1007/s00521-016-2179-x

    Article  Google Scholar 

  16. Meng Z, Zhong Y, Mao G, Liang Y (2022) Pso-sono: a novel PSO variant for single-objective numerical optimization. Inf Sci 586:176–191. https://doi.org/10.1016/j.ins.2021.11.076

    Article  Google Scholar 

  17. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513. https://doi.org/10.1007/s00521-015-1870-7

    Article  Google Scholar 

  18. Mirjalili S (2016) Sca: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  19. Ma M, Wu J, Shi Y, Yue L, Yang C, Chen X (2022) Chaotic random opposition-based learning and Cauchy mutation improved moth-flame optimization algorithm for intelligent route planning of multiple uavs. IEEE Access 10:49385–49397. https://doi.org/10.1109/ACCESS.2022.3172710

    Article  Google Scholar 

  20. Shao S, Peng Y, He C, Du Y (2020) Efficient path planning for UAV formation via comprehensively improved particle swarm optimization. ISA Trans 97:415–430. https://doi.org/10.1016/j.isatra.2019.08.018

    Article  Google Scholar 

  21. Cekmez U, Ozsiginan M, Sahingoz OK (2016) Multi colony ant optimization for uav path planning with obstacle avoidance. In: 2016 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 47–52. IEEE. https://doi.org/10.1109/ICUAS.2016.7502621

  22. Lv J-X, Yan L-J, Chu S-C, Cai Z-M, Pan J-S, He X-K, Xue J-K (2022) A new hybrid algorithm based on golden eagle optimizer and grey wolf optimizer for 3d path planning of multiple uavs in power inspection. Neural Computing and Applications. https://doi.org/10.1007/s00521-022-07080-0

  23. Yao J, Sha Y, Chen Y, Zhang G, Hu X, Bai G, Liu J (2022) Ihssao: an improved hybrid salp swarm algorithm and aquila optimizer for uav path planning in complex terrain. Appl Sci 12(11):5634. https://doi.org/10.3390/app12115634

    Article  Google Scholar 

  24. Tong B, Chen L, Duan H (2021) A path planning method for UAVs based on multi-objective pigeon-inspired optimisation and differential evolution. Int J Bio-Inspired Comput 17(2):105–112. https://doi.org/10.1504/IJBIC.2021.114079

    Article  Google Scholar 

  25. Meng Z, Pan J-S, Tseng K-K (2019) Pade: an enhanced differential evolution algorithm with novel control parameter adaptation schemes for numerical optimization. Knowl Based Syst 168:80–99. https://doi.org/10.1016/j.knosys.2019.01.006

    Article  Google Scholar 

  26. Meng Z, Yang C (2022) Two-stage differential evolution with novel parameter control. Inf Sci 596:321–342. https://doi.org/10.1016/j.ins.2022.03.043

    Article  Google Scholar 

  27. Meng Z (2023) Dimension improvements based adaptation of control parameters in differential evolution: a fitness-value-independent approach. Exp Syst Appl 223:119848. https://doi.org/10.1016/j.eswa.2023.119848

    Article  Google Scholar 

  28. Hussain K, Mohd Salleh MN, Cheng S, Shi Y (2019) Metaheuristic research: a comprehensive survey. Artif Intell Rev 52(4):2191–2233. https://doi.org/10.1007/s10462-017-9605-z

    Article  Google Scholar 

  29. Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH (2021) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609. https://doi.org/10.1016/j.cma.2020.113609

    Article  MathSciNet  MATH  Google Scholar 

  30. Abualigah L, Almotairi KH (2022) Dynamic evolutionary data and text document clustering approach using improved aquila optimizer based arithmetic optimization algorithm and differential evolution. Neural Comput Appl 34(23):20939–20971. https://doi.org/10.1007/s00521-022-07571-0

    Article  Google Scholar 

  31. Agushaka JO, Ezugwu AE (2021) Advanced arithmetic optimization algorithm for solving mechanical engineering design problems. PLoS One 16(8):0255703. https://doi.org/10.1371/journal.pone.0255703

    Article  Google Scholar 

  32. Guo H, Sun Z, Sun H, Ebrahimian H (2021) Optimal model of the combined cooling, heating, and power system by improved arithmetic optimization algorithm. Energy Sour Part A Recov Utili Environ Effects. https://doi.org/10.1080/15567036.2021.1966138

    Article  Google Scholar 

  33. Kaveh A, Hamedani KB (2022) Improved arithmetic optimization algorithm and its application to discrete structural optimization. Structures, vol 35. Elsevier, UK, pp 748–764

    Google Scholar 

  34. Wang R-B, Wang W-F, Xu L, Pan J-S, Chu S-C (2021) An adaptive parallel arithmetic optimization algorithm for robot path planning. J Adv Transp. https://doi.org/10.1155/2021/3606895

    Article  Google Scholar 

  35. Abualigah L, Ewees AA, Al-qaness MA, Elaziz MA, Yousri D, Ibrahim RA, Altalhi M (2022) Boosting arithmetic optimization algorithm by sine cosine algorithm and levy flight distribution for solving engineering optimization problems. Neural Comput Appl 34(11):8823–8852. https://doi.org/10.1007/s00521-022-06906-1

    Article  Google Scholar 

  36. Harik GR, Lobo FG, Goldberg DE (1999) The compact genetic algorithm. IEEE Trans Evolu Comput 3(4):287–297. https://doi.org/10.1109/4235.797971

    Article  Google Scholar 

  37. Pan J-S, Song P-C, Chu S-C, Peng Y-J (2020) Improved compact cuckoo search algorithm applied to location of drone logistics hub. Mathematics 8(3):333. https://doi.org/10.3390/math8030333

    Article  Google Scholar 

  38. Xue X, Lu J (2020) A compact brain storm algorithm for matching ontologies. IEEE Access 8:43898–43907. https://doi.org/10.1109/ACCESS.2020.2977763

    Article  Google Scholar 

  39. Neri F, Mininno E, Iacca G (2013) Compact particle swarm optimization. Inf Sci 239:96–121. https://doi.org/10.1016/j.ins.2013.03.026

    Article  MathSciNet  Google Scholar 

  40. Mehanović D, Kečo D, Kevrić J, Jukić S, Miljković A, Mašetić Z (2021) Feature selection using cloud-based parallel genetic algorithm for intrusion detection data classification. Neural Comput Appl 33(18):11861–11873. https://doi.org/10.1007/s00521-021-05871-5

    Article  Google Scholar 

  41. Ding S, Du W, Zhao X, Wang L, Jia W (2019) A new asynchronous reinforcement learning algorithm based on improved parallel PSO. Appl Intell 49(12):4211–4222. https://doi.org/10.1007/s10489-019-01487-4

    Article  Google Scholar 

  42. Chai Q-w, Chu S-C, Pan J-S, Hu P, Zheng W-M (2020) A parallel woa with two communication strategies applied in dv-hop localization method. EURASIP J Wirel Commun Netw 1:1–10. https://doi.org/10.1186/s13638-020-01663-y

    Article  Google Scholar 

  43. Wang X, Pan J-S, Chu S-C (2020) A parallel multi-verse optimizer for application in multilevel image segmentation. IEEE Access 8:32018–32030. https://doi.org/10.1109/ACCESS.2020.2973411

    Article  Google Scholar 

  44. Song P-C, Pan J-S, Chu S-C (2020) A parallel compact cuckoo search algorithm for three-dimensional path planning. Appl Soft Comput 94:106443. https://doi.org/10.1016/j.asoc.2020.106443

    Article  Google Scholar 

  45. Pehlivanoglu YV (2012) A new vibrational genetic algorithm enhanced with a voronoi diagram for path planning of autonomous uav. Aerosp Sci Technol 16(1):47–55. https://doi.org/10.1016/j.ast.2011.02.006

    Article  Google Scholar 

  46. Wan N, Xu D, Ye H (2018) Improved cubic b-spline curve method for path optimization of manipulator obstacle avoidance. In: 2018 Chinese Automation Congress (CAC), pp. 1471–1476. IEEE. https://doi.org/10.1109/CAC.2018.8623056

  47. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102. https://doi.org/10.1109/4235.771163

    Article  Google Scholar 

  48. Zhang S, Fan F, Li W, Chu S-C, Pan J-S (2021) A parallel compact sine cosine algorithm for tdoa localization of wireless sensor network. Telecommun Syst 78(2):213–223. https://doi.org/10.1007/s11235-021-00804-y

    Article  Google Scholar 

  49. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE. https://doi.org/10.1109/ICNN.1995.488968

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruo-Bin Wang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, RB., Wang, WF., Geng, FD. et al. UAV path planning in mountain areas based on a hybrid parallel compact arithmetic optimization algorithm. Neural Comput & Applic (2023). https://doi.org/10.1007/s00521-023-08983-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00521-023-08983-2

Keywords

Navigation