Log in

Brain tumor segmentation using extended Weiner and Laplacian lion optimization algorithm with fuzzy weighted k-mean embedding linear discriminant analysis

  • S.I. : Neuro, fuzzy and their Hybridization
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper presents an efficient skull strip** method to improve the decision-making process. Extended Weiner filtering (EWF) is used for removing the noise and enhancing the quality of images. Further, laplacian lion optimization algorithm (LXLOA) is implemented. LXLOA utilizes the Otsu’s and Tsallis entropy fitness function to determine an optimal solution. The implemented LXLOA provides a threshold value required for performing the segmentation on the brain MRI images. The extracted features are selected using fuzzy weighted k-means embedding LDA (linear discriminant analysis) method for improving training of the classification model. The proposed LXLOA is extensively tested on standard benchmark functions CEC 2017 and outperforms the existing state-of-the-art algorithm. Rigorous statistical analysis is conducted to determine the statistical significance. Three-fold performance comparison is performed by considering (a) the quality of the segmented image; (b) accuracy, sensitivity, and specificity; and (c) computational cost of convergence for finding an optimal solution. Result reveals that LXLOA gives promising results and demonstrate effective outcomes on the standard quality measures (a) accuracy (97.37%); (b) sensitivity (85.8%); (c) specificity (90%); and (d) precision (91.92%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

EWF:

Extended Weiner filter

LXLOA:

Laplacian lion optimization algorithm

WOA:

Whale optimization algorithm

APSO:

Adaptive particle swarm optimization

DE:

Differential evolution

LOA:

Lion optimization algorithm

ACSA:

Adaptive cuckoo search algorithm

PSO:

Particle swarm optimization

GWO:

Grey wolf optimization

CSA:

Cuckoo search algorithm

CSO:

Cat swarm optimization

CNN:

Convolutional neural network

IBSR:

Brain segmentation repository

MRI:

Magnetic resonance imaging

CT:

Computed tomography

PSRN:

Peak signal-to-noise ratio

SSIM:

Structural similarity index measure

RMSE:

Root mean square error

SVM:

Support vector machine

ANN:

Artificial neural network

LDA:

Linear discriminant analysis

FKM:

Fuzzy weighted K-mean

WHO:

World Health Organization

3-D:

3-Dimensional

CT:

Computed tomography

LB:

Lower bound

UB:

Upper bound

DIM:

Dimension

GLCM:

Grey level co-occurrence matrices

GLDM:

Grey level difference matrix

CEC:

Congress on evolutionary computation

\(K(x,y)\) :

Filter

U(d, h):

Fourier transform of PSF (point spread function)

\({P}_{s}\left(d,h\right)\) :

Power spectrum of the processed signal process

\({P}_{n}\left(d,h\right)\) :

Power spectrum of processed noise

\(SI\) :

Dispersion index

\(\sigma\) :

Standard deviation

\(\mu\) :

Mean

EWF (x,y):

Extended wiener filter

\({M}_{final}\) :

Fitness value

\(\alpha\),\(\beta\) :

Random values ranging from 0 to 1

\({M}_{Otsu}\) :

Otsu’s function

\({M}_{Tsallis entropy}\) :

Tsallis entropy

\({l}_{i}\) :

Laplacian distributed random ``number

\(w\) :

Location

\(q\) :

Scale parameter

\({u}_{i}\),\({v}_{i}\) :

Distributed random numbers having range [0, 1]

\({\mathrm{New}\_\mathrm{Cub}}_{M}\) :

Offspring (New cube)

\({x}_{male}^{i}\) :

Male in pride

\({x}_{female}^{i}\) :

Female in pride

U:

Universal function

K(x,y) :

Factor of features

\({s}_{xk}\) :

Membership function showing the fuzzy cluster

Wfb:

Fuzzy weighted k-means

\({y}_{ie}\) :

Factor

\({c}_{ke}\) :

Weighted mean

\({f}_{ek}\) :

Weight of feature e for cluster k.

\({m}_{xy}\) :

Weighted mean

\({g}_{y}\) :

Sample of data belonging to y

\({n}_{x}\) :

Count of data points reside in x

g:

Relative distance from the cluster

m:

Fuzzifier function

References

  1. Erickson BJ, Korfiatis P, Akkus Z, Kline TL (2017) Machine learning for medical imaging. Radiographics 37(2):505–515

    Google Scholar 

  2. Giger ML (2018) Machine learning in medical imaging. J Am Coll Radiol 15(3):512–520

    Google Scholar 

  3. Kumar A, Bi L, Kim J, Feng DD (2020) Machine learning in medical imaging. In: Feng DD (ed) Biomedical information technology. Academic Press, Cambridge, pp 167–196

    Google Scholar 

  4. McAuliffe MJ, Lalonde FM, McGarry D, Gandler W, Csaky K, Trus BL (2001) Medical image processing, analysis and visualization in clinical research. In: Proceedings 14th IEEE symposium on computer-based medical systems. CBMS 2001 (pp. 381–386). IEEE

  5. Bhattacharyya S, Konar D, Platos J, Kar C, Sharma K (eds) (2020) Hybrid machine intelligence for medical image analysis. Springer, Berlin

    Google Scholar 

  6. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117

    Google Scholar 

  7. Bagchi S, Tay KG, Huong A, Debnath SK (2020) Image processing and machine learning techniques used in computer-aided detection system for mammogram screening-A review. Int J Electr Comput Eng 10(3):2336

    Google Scholar 

  8. Hatt M, Parmar C, Qi J, El Naqa I (2019) Machine (deep) learning methods for image processing and radiomics. IEEE Trans Radiat Plasma Med Sci 3(2):104–108

    Google Scholar 

  9. Latif J, **ao C, Imran A, Tu S (2019) Medical imaging using machine learning and deep learning algorithms: a review. In: 2019 2nd International conference on computing, mathematics and engineering technologies (iCoMET) (pp. 1–5). IEEE

  10. Lundervold SA, Lundervold A (2018) An overview of deep learning in medical imaging focusing on MRI. ar**v, ar**v:1811

  11. Roy S, Bandyopadhyay SK (2012) Detection and quantification of brain tumor from MRI of brain and it’s symmetric analysis. Int J Info Commun Technol Res 2(6)

  12. Despotović I, Goossens B, Philips W (2015) MRI segmentation of the human brain: challenges, methods, and applications. Comput Math Methods Med 2015:1–23

    Google Scholar 

  13. Patel J, Doshi K (2014) A study of segmentation methods for detection of tumor in brain MRI. Adv Electron Electr Eng 4(3):279–284

    Google Scholar 

  14. Lei B, Fan J (2019) Image thresholding segmentation method based on minimum square rough entropy. Appl Soft Comput 84:105687

    Google Scholar 

  15. Park JG, Lee C (2009) Skull strip** based on region growing for magnetic resonance brain images. Neuroimage 47(4):1394–1407

    Google Scholar 

  16. Ahmmed R, Swakshar AS, Hossain MF, Rafiq MA (2017) Classification of tumors and it stages in brain MRI using support vector machine and artificial neural network. In: 2017 International conference on electrical, computer and communication engineering (ECCE) (pp. 229–234). IEEE

  17. Qin AK, Huang VL, Suganthan PN (2008) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417

    Google Scholar 

  18. Sharawi M, Zawbaa HM, Emary E (2017) Feature selection approach based on whale optimization algorithm. In: 2017 Ninth international conference on advanced computational intelligence (ICACI) (pp. 163–168). IEEE

  19. Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf Process Lett 85(6):317–325

    MathSciNet  MATH  Google Scholar 

  20. Boothalingam R (2018) Optimization using lion algorithm: a biological inspiration from lion’s social behavior. Evol Intel 11(1–2):31–52

    Google Scholar 

  21. Hu G, Wu J, Li H, Hu X (2020) Shape optimization of generalized developable H- Bézier surfaces using adaptive cuckoo search algorithm. Adv Eng 149:102889

    Google Scholar 

  22. El Aziz MA, Ewees AA, Hassanien AE (2018) Multi-objective whale optimization algorithm for content-based image retrieval. Multimed Tools Appl 77(19):26135–26172

    Google Scholar 

  23. Fister Jr I, Yang XS., Fister I, Brest J, Fister D (2013) A brief review of nature- inspired algorithms for optimization. ar**v preprint ar**v:1307.4186.

  24. Ramson SJ, Raju KL, Vishnu S, Anagnostopoulos T (2019) Nature inspired optimization techniques for image processing—A short review. In: Hemanth J, Balas VE (eds) Nature inspired optimization techniques for image processing applications. Springer, Cham, pp 113–145

    Google Scholar 

  25. Nayyar A, Puri V, Suseendran G (2019) Artificial bee colony optimization— population-based meta-heuristic swarm intelligence technique. In: Balas VE, Sharma N, Chakrabarti A (eds) Data management, analytics and innovation. Springer, Singapore, pp 513–525

    Google Scholar 

  26. Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2014) A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif Intell Rev 42(1):21–57

    Google Scholar 

  27. Karaboga D, Basturk B (2007) Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In: Melin P, Castillo O, Aguilar LT, Kacprzyk J, Pedrycz W (eds) International fuzzy systems association world congress. Springer, Berlin, pp 789–798

    Google Scholar 

  28. Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8(1):687–697

    Google Scholar 

  29. Junior FEF, Yen GG (2019) Particle swarm optimization of deep neural networks architectures for image classification. Swarm Evol Comput 49:62–74

    Google Scholar 

  30. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Google Scholar 

  31. Lai CC, Tseng DC (2004) A hybrid approach using Gaussian smoothing and genetic algorithm for multi-level thresholding. Int J Hybrid Intell Syst 1(3–4):143–152

    Google Scholar 

  32. Zhan ZH, Zhang J, Li Y, Chung HSH (2009) Adaptive particle swarm optimization. IEEE Trans Syst, Man, Cybern, Part B (Cybernetics) 39(6):1362–1381

    Google Scholar 

  33. Dhal KG, Das A, Ray S, Das S (2019) A clustering based classification approach based on modified cuckoo search algorithm. Pattern Recognit Image Anal 29(3):344–359

    Google Scholar 

  34. Kavuturu KK, Narasimham PVRL (2020) Multi-objective economic operation of modern power system considering weather variability using adaptive cuckoo search algorithm. J Electr Syst Inf Technol 7(1):1–29

    Google Scholar 

  35. Al-Tashi Q, Rais HM, Abdulkadir SJ, Mirjalili S, Alhussian H (2020) A review of grey wolf optimizer-based feature selection methods for classification. In: Mirjalili S, Faris H, Aljarah I (eds) Evolutionary machine learning techniques. Springer, Singapore, pp 273–286

    Google Scholar 

  36. Ahmed AM, Rashid TA, Saeed SAM (2020) Cat swarm optimization algorithm: a survey and performance evaluation. Comput Intell Neurosci 2020:1–20

    Google Scholar 

  37. Yazdani M, Jolai F (2016) Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm. J Comput Des Eng 3(1):24–36

    Google Scholar 

  38. Vijh S, Gaurav P, Pandey HM (2020) Hybrid bio-inspired algorithm and convolutional neural network for automatic lung tumor detection. Neural Comput Appl. https://doi.org/10.1007/s00521-020-05362-z

    Article  Google Scholar 

  39. Pandey HM, Chaudhary A, Mehrotra D (2014) A comparative review of approaches to prevent premature convergence in GA. Appl Soft Comput 24:1047–1077

    Google Scholar 

  40. Wang G, Li W, Ourselin S, Vercauteren T (2017) Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: International MICCAI brainlesion workshop (pp. 178–190). Springer, Cham

  41. Kumar V, Sachdeva J, Gupta I, Khandelwal N, Ahuja CK. (2011). Classification of brain tumors using PCA-ANN. In: 2011 World congress on information and communication technologies (pp. 1079–1083). IEEE

  42. Sharma A, Kumar S, Singh SN (2018) Brain tumor segmentation using DE embedded OTSU method and neural network. Multidimens Syst Signal Process 30:1263–1291

    MathSciNet  MATH  Google Scholar 

  43. El Abbadi NK, Kadhim NE (2017) Brain cancer classification based on features and artificial neural network. Brain 6(1):123–134

    Google Scholar 

  44. Lashkari A (2010) A neural network based method for brain abnormality detection in MR images using Gabor wavelets. Int J Comput Appl 4(7):9–15

    Google Scholar 

  45. Vijh S, Sharma S, Gaurav P (2020) Brain tumor segmentation using OTSU embedded adaptive particle swarm optimization method and convolutional neural network. In: Hemanth J, Bhatia M, Geman O (eds) Data visualization and knowledge engineering. Springer, Cham, pp 171–194

    Google Scholar 

  46. Zhao X, Wu Y, Song G, Li Z, Zhang Y, Fan Y (2018) A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med Image Anal 43:98–111

    Google Scholar 

  47. Loizou CP, Petroudi S, Seimenis I, Pantziaris M, Pattichis CS (2015) Quantitative texture analysis of brain white matter lesions derived from T2-weighted MR images in MS patients with clinically isolated syndrome. J Neuroradiol 42(2):99–114

    Google Scholar 

  48. Manic KS, Priya RK, Ra**ikanth V (2016) Image multithresholding based on Kapur/Tsallis entropy and firefly algorithm. Indian J Sci Technol 9(12):89949

    Google Scholar 

  49. Soleimani V, Vincheh FH (2013) Improving ant colony optimization for brain MRI image segmentation and brain tumor diagnosis. In: 2013 First Iranian conference on pattern recognition and image analysis (PRIA) (pp. 1–6). IEEE

  50. Jafari M, Shafaghi R (2012) A hybrid approach for automatic tumor detection of brain MRI using support vector machine and genetic algorithm. Glob J Sci, Eng Technol 3:1–8

    Google Scholar 

  51. Yin PY (1999) A fast scheme for optimal thresholding using genetic algorithms. Signal Process 72(2):85–95

    MATH  Google Scholar 

  52. Pugalenthi R, Rajakumar MP, Ramya J, Ra**ikanth V (2019) Evaluation and classification of the brain tumor MRI using machine learning technique. J Control Eng Appl Inform 21(4):12–21

    Google Scholar 

  53. Natarajan P, Krishnan N, Kenkre NS, Nancy S, Singh BP (2012) Tumor detection using threshold operation in MRI brain images. In: 2012 IEEE International conference on computational intelligence and computing research (pp. 1–4). IEEE

  54. Manogaran G, Shakeel PM, Hassanein AS, Kumar PM, Babu GC (2018) Machine learning approach-based gamma distribution for brain tumor detection and data sample imbalance analysis. IEEE Access 7:12–19

    Google Scholar 

  55. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Larochelle H (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31

    Google Scholar 

  56. Bansal P, Gupta S, Kumar S, Sharma S, Sharma S (2019) MLP-LOA: a metaheuristic approach to design an optimal multilayer perceptron. Soft Comput 23(23):12331–12345

    Google Scholar 

  57. Vrugt JA, Beven KJ (2018) Embracing equifinality with efficiency: limits of acceptability sampling using the DREAM (LOA) algorithm. J Hydrol 559:954–971

    Google Scholar 

  58. Li H, Wang D, Abreu JRC, Zhao Q, Pineda OB (2021) PSO+ LOA: hybrid constrained optimization for scheduling scientific workflows in the cloud. J Supercomput 73:1–27

    Google Scholar 

  59. http://www.medinfo.cs.ucy.ac.cy/

  60. Zhuang AH, Valentino DJ, Toga AW (2006) Skull-strip** magnetic resonance brain images using a model-based level set. Neuroimage 32(1):79–92

    Google Scholar 

  61. Vijh S, Sarma R, Kumar S (2021) Lung tumor segmentation using marker- controlled watershed and support vector machine. Int J E-Health Med Commun (IJEHMC) 12(2):51–64

    Google Scholar 

  62. Salehi H, Vahidi J, Abdeljawad T, Khan A, Rad SYB (2020) A SAR image despeckling method based on an extended adaptive wiener filter and extended guided filter. Remote Sens 12(15):2371

    Google Scholar 

  63. Singh A (2019) Laplacian whale optimization algorithm. Int J Syst Assur Eng Manag 10(4):713–730

    Google Scholar 

  64. Jain A, Zongker D (1997) Feature selection: evaluation, application, and small sample performance. IEEE Trans Pattern Anal Mach Intell 19(2):153–158

    Google Scholar 

  65. Malegori C, Franzetti L, Guidetti R, Casiraghi E, Rossi R (2016) GLCM, an image analysis technique for early detection of biofilm. J Food Eng 185:48–55

    Google Scholar 

  66. Zayed N, Elnemr HA (2015) Statistical analysis of haralick texture features to discriminate lung abnormalities. J Biomed Imaging 2015:12

    Google Scholar 

  67. Jiang J, Trundle P, Ren J (2010) Medical image analysis with artificial neural networks. Comput Med Imaging Graph 34(8):617–631

    Google Scholar 

  68. Ra**i NH, Bhavani R (2011) Classification of MRI brain images using k- nearest neighbor and artificial neural network. In: 2011 International conference on recent trends in information technology (ICRTIT) (pp. 563–568). IEEE

  69. Suzuki K (2017) Overview of deep learning in medical imaging. Radiol Phys Technol 10(3):257–273

    Google Scholar 

  70. Cheng R, Li M, Tian Y, Zhang X, Yang S, ** Y, Yao X (2017). Benchmark functions for CEC’2017 competition on evolutionary many-objective optimization. In Proc. IEEE Congr. Evol. Comput. (pp. 1–20).

  71. Hore A, Ziou D (2010). Image quality metrics: PSNR vs. SSIM. In: 2010 20th International conference on pattern recognition (pp. 2366–2369). IEEE.

  72. Tanchenko A (2014) Visual-PSNR measure of image quality. J Vis Commun Image Represent 25(5):874–878

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Mohan Pandey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Surbhi Vijh and Hari Mohan Pandey equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijh, S., Pandey, H.M. & Gaurav, P. Brain tumor segmentation using extended Weiner and Laplacian lion optimization algorithm with fuzzy weighted k-mean embedding linear discriminant analysis. Neural Comput & Applic 35, 7315–7338 (2023). https://doi.org/10.1007/s00521-021-06709-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06709-w

Keywords

Navigation