Log in

Tailoring the Mechanical Properties Through the Control of Heat Treatments in a Precipitation Hardening Metastable Stainless Steel

Anpassung der mechanischen Eigenschaften durch Steuerung der Wärmebehandlung in einem ausscheidungshärtenden metastabilen Edelstahl

  • Originalarbeit
  • Published:
BHM Berg- und Hüttenmännische Monatshefte Aims and scope Submit manuscript

Abstract

This research focusses on a complex precipitation (Ni3(Ti,Al)) hardenable metastable stainless steel. Dual phase (austenite, γ/martensite, α′) and ultrafine grained austenitic microstructures obtained after applying isochronal heat treatments (0.1–10 ℃/s) to a cold-rolled (CR) metastable stainless steel have been microstructurally and mechanically characterized using different experimental techniques (optical microscopy, SEM, TEM, magnetic measurements, tensile tests). A wide range of strength (2.1–1.1 GPa) and elongation (3–25%) values have been obtained using sub-size samples (7 mm in gauge length). The scientific aim is the understanding of those microstructural parameters and mechanisms that influence the achievement of ultra-fine grained microstructures and control or the mechanical behaviour of different complex microstructures in this type of steels. Whereas the industrial aim would be to expand the applicability of this steel and use this scientific knowledge to design steels with optimized microstructures and mechanical properties.

Zusammenfassung

Diese Forschung konzentriert sich auf einen komplexen aushärtbaren metastabilen Edelstahl (Ni3(Ti,Al)). Doppelphasen- (austenit, γ/martensit, α′) und ultrafeinkörnige austenitische Mikrostrukturen, die nach Anwendung isochroner Wärmebehandlungen (0.1–10 ºC/s) auf einen kaltgewalzten (CR) metastabilen rostfreien Stahl erhalten wurden, wurden mikrostrukturell und mechanisch unter Verwendung verschiedener charakterisiert experimentelle techniken (optische Mikroskopie, SEM, TEM, magnetische Messungen, Zugversuche). Ein breiter Bereich von Festigkeitswerten (2.1–1.1 GPa) und Dehnungswerten (3–25 %) wurde unter Verwendung von ben mit geringer Größe (7 mm Messlänge) erhalten. Das wissenschaftliche Ziel ist das Verständnis der mikrostrukturellen Parameter und Mechanismen, die das chen von ultrafeinen Mikrostrukturen und die Kontrolle oder das mechanische Verhalten verschiedener komplexer Mikrostrukturen in dieser Art von Stählen beeinflussen. während das industrielle Ziel darin besteht, die Anwendbarkeit dieses Stahls zu erweitern und diese wissenschaftlichen Erkenntnisse zu nutzen, um Stähle mit optimierten Mikrostrukturen und mechanischen Eigenschaften zu konstruieren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Post, J.; Datta, K.; Huetink, J.: Constitutive behaviour of the metastable stainless steel: Sandvik Nanoflex, AIP Conference Proceeding, 712 (2004), pp 1670–1675

    Google Scholar 

  2. Slunder, C. J.; Hoenie, A. F.; Hall, A. M.: Thermal and Mechanical Treatment for precipitation-hardening stainless steel, NASA SP (Series), 5089 (1967), pp 1–192

    Google Scholar 

  3. Eskandari, M.; Najafizadeh, A.; Kermanpur, A.; Karimi, M.: Potential application of nanocrystalline 301 austenitic stainless steel in lightweight vehicle structures, Materials & Design, 30 (2009), no. 9, pp 3869–3872

  4. Hamada, A. S.; Kisko, A. P.; Sahu, P.; Karjalainen, L. P.: Enhancement of mechanical properties of a TRIP-aided austenitic stainless steel by controlled reversion annealing, Materials Science Engineering A, 628 (2015), pp 154–159

    Article  Google Scholar 

  5. Celada Casero, C.; San Martín, D.: Austenite formation in a cold-rolled semi-austenitic stainless steel, Metallurgical & Materials Transactions A, 45 (2014), no. 4, pp 1767–1777

  6. Celada, C.; Toda-Caraballo, I.; Kim, B.; San Martín, D.: Chemical banding revealed by chemical etching in a cold-rolled metastable stainless steel, Materials Characterization, 84 (2013), pp 142–152

    Article  Google Scholar 

  7. Lichtenegger, P.; Blöch, R.: Colour etching of high alloy steels, Practical Metallography, 12 (1975), pp 567–673

    Google Scholar 

  8. San Martin, D.; Rivera Diaz del Castillo, P. E. J.; Peekstok, E.; van der Zwaag, S.: A new etching route for revealing the austenite grain boundaries in an 11.4 % Cr precipitation hardening semi-austenitic stainless steel, Materials Characterization, 58 (2007), no. 5, pp 455–460

  9. Kasper, J. S.; The ordering of atoms in the χ‑phase of the Iron–Chromium–Molybdenum System, Acta Metallurgica, 2 (1954), pp 456–461

    Article  Google Scholar 

  10. Scheller, P. R.; Flesch, R.; Bleck, W.: Solidification morphology and microstructure properties at increased cooling rates for 18‑8 Cr–Ni stainless steel, Advanced Engineering Materials, 1 (1999), no. 3–4, pp 209–214

    Article  Google Scholar 

  11. Salmon Cox, P. H.; Reisdorf, B. G.; Pellissier, G. E.: The origin and significance of banding in 18Ni (250) maraging steel, Trans AIME, 239 (1967), pp 1809–1817

    Google Scholar 

  12. Han, J.; Lee, Y.-K.: The effects of the heating rate on the reverse transformation mechanism and the phase stability of reverted austenite in medium Mn steels, Acta Materialia, 67 (2014), pp 354–361

    Article  Google Scholar 

  13. Apple, C. A.; Krauss, G.: The effect of heating rate on the martensite to austenite transformation in Fe-Ni‑C alloys, Acta Metallurgica, 20 (1972), no. 7, pp 849–85

    Article  Google Scholar 

  14. Tomimura, K.; Takaki, S.; Tokunaga, Y.: Reversion mechanism from deformation induced martensite to austenite in metastable austenitic stainless steels, ISIJ International, 31 (1991), no 12, pp 1431–1437

    Article  Google Scholar 

  15. Liu, P.: Relationships Between Microstructure and Properties of Stainless Steels‑A Few Working Examples, Materials Characterization, 44 (2000), no. 4–5, pp 413–424

    Article  Google Scholar 

  16. Celada-Casero, C.; Huang, B. M.; Aranda, M. M.; Yang, J.-R.; San Martin, D.: Mechanisms of ultrafine-grained austenite formation under different isochronal conditions in a cold-rolled metastable stainless steel, Materials Characterization, 118 (2016), pp 129–141

    Article  Google Scholar 

  17. Thuvander, M.; Andersson, M.; Stiller, K.: Precipitation process of martensitic PH stainless steel Nanoflex, Materials Science Technology, 28 (2012), no. 6, pp 695–701

    Article  Google Scholar 

Download references

Acknowledgements

C. Celada-Casero would like to thank the financial support from the Consejo Superior de Investigaciones Científicas (CSIC) (JAEPre_2011_01167) in the form of a JAE-predoc grant, co-funded by the European Social Fund and to the National Science Council of Taiwan granting a research internship at the National Taiwan University (NTU). I. Toda-Caraballo is grateful for financial support through the fellowship 2016-T2/IND-1693 from the Programme Atracción de talento investigador (Consejería de Educación, Juventud y Deporte, Comunidad de Madrid). C. Celada-Casero and D. San-Martin acknowledge the financial support from the Ministerio de Economía y Competitividad (project No. MAT2010-19522). The authors are grateful to CAI of Physical Techniques, (Complutense University of Madrid) and the Phase Transformations and Electron Microscopy labs of CENIM-CSIC for the experimental support. Authors are also grateful to Prof. Jan Post and Ir. Manso Groen from Philips Consumer Lifestyle for supplying the steels for this investigation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carola Celada-Casero PhD or David San-Martin PhD.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celada-Casero, C., Urones-Garrote, E., Chao, J. et al. Tailoring the Mechanical Properties Through the Control of Heat Treatments in a Precipitation Hardening Metastable Stainless Steel. Berg Huettenmaenn Monatsh 165, 26–32 (2020). https://doi.org/10.1007/s00501-019-00930-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00501-019-00930-w

Keywords

Schlüsselwörter

Navigation