Log in

Optimization of fractional-order PI-PID controllers for MIMO systems using artificial bee colony algorithm

  • Application of soft computing
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this study, we examined the potential of various artificial bee colony (ABC) algorithm variants for optimizing the design of fractional-order Proportional Integral and Derivative (FOPI and FOPID) controllers for multi-input-multi-output systems. The performance of the FOPI and FOPID controllers was evaluated in controlling Wood and Berry distillation columns and an industrial polymerization reactor with and without decoupling. The simulation results showed that the multi-population ABC algorithm based on global and local optima outperformed the other ABC algorithm variants and other state-of-the-art optimization algorithms in terms of control performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Algorithm 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability

Any data that support the findings of this study are included within the article.

References

  • Ben Djaballah C, Nouibat W (2022) A new multi-population artificial bee algorithm based on global and local optima for numerical optimization. Cluster Comput 25:2037–2059. https://doi.org/10.1007/s10586-021-03507-w

    Article  Google Scholar 

  • Besta CS (2018) Multi-centralized control system design based on equivalent transfer functions using gain and phase-margin specifications for unstable TITO process. Int J Dyn Control 6:817–826. https://doi.org/10.1007/s40435-017-0345-3

    Article  MathSciNet  Google Scholar 

  • Bhookya J, Kumar Jatoth R (2020) Fractional order PID controller design for multivariable systems using TLBO. Chem Prod Process Model. https://doi.org/10.1515/cppm-2019-0061

    Article  Google Scholar 

  • Borase RP, Maghade DK, Sondkar SY, Pawar SN (2020) A review of PID control, tuning methods and applications. Int J Dyn Control 9:818–827. https://doi.org/10.1007/s40435-020-00665-4

    Article  MathSciNet  Google Scholar 

  • Cao Y, Lu Y, Pan X, Sun N (2019) An improved global best guided artificial bee colony algorithm for continuous optimization problems. Cluster Comput 22:3011–3019

    Article  Google Scholar 

  • Chen Y, Petras I, Xue D (2009) Fractional order control—a tutorial In 2009 American control conference. IEEE, pp 1397–1411

  • Chien IL, Huang HP, Yang JC (1999) A simple multiloop tuning method for PID controllers with no proportional kick. Ind Eng Chem Res 38:1456–1468

    Article  Google Scholar 

  • Congalidis JP, Richards JR (1998) Process control of polymerization reactors: an industrial perspective. Polym React Eng 6:71–111

    Article  Google Scholar 

  • de Castro FA, Bernardes ND, de SL Cuadros MA, de Almeida GM (2016) Comparison of fractional and integer PID controllers tuned by genetic algorithm. In: 2016 12th IEEE international conference on industry applications (INDUSCON). IEEE, pp 1–7

  • Gagnon E, Pomerleau A, Desbiens A (1998) Simplified, ideal or inverted decoupling? ISA Trans 37:265–276. https://doi.org/10.1016/s0019-0578(98)00023-8

    Article  Google Scholar 

  • Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29:17–35

    Article  Google Scholar 

  • Gao WF, Liu SY (2012) A modified artificial bee colony algorithm. Comput Oper Res 39:687–697

    Article  Google Scholar 

  • Ghosh S, Pan S (2021) Centralized PI controller design method for MIMO processes based on frequency response approximation. ISA Trans 110:117–128. https://doi.org/10.1016/j.isatra.2020.10.041

    Article  Google Scholar 

  • Hariz MB, Bouani F (2015) Design of controllers for decoupled TITO systems using different decoupling techniques. In: 2015 20th international conference on methods and models in automation and robotics (MMAR). IEEE, pp 1116–1121

  • Juchem J, Muresan C, De Keyser R, Ionescu CM (2019) Robust fractional-order auto-tuning for highly-coupled MIMO systems. Heliyon 5:e02154

    Article  Google Scholar 

  • Kalpana D, Thyagarajan T, Venkatachalam N (2017) Design of fractional order PI controller for MIMO system using relay feedback In Proceedings-TIMA 2017: 9th international conference on trends in industrial measurement and automation. IEEE, pp 1–7

  • Karaboga D et al (2005) An idea based on honey bee swarm for numerical optimization Technical report, Technical report-tr06. Erciyes University, Engineering Faculty, Computer

  • Kothari K, Mehta U, Prasad R (2021) A single-step identification strategy for the coupled TITO process using fractional calculus. Trans Inst Meas Control 43:2169–2179. https://doi.org/10.1177/0142331221992732

    Article  Google Scholar 

  • Kumar R, Anand S, Khulbey A, Jha AN (2020) Design of fractional order controller for Wood–Berry distillation column. In: 2020 IEEE 17th India council international conference, INDICON 2020. IEEE, pp 1–6

  • Lakshmanaprabu SK, Banu US, Hemavathy PR (2017) Fractional order IMC based PID controller design using Novel Bat optimization algorithm for TITO process. Energy Procedia 117:1125–1133. https://doi.org/10.1016/j.egypro.2017.05.237

    Article  Google Scholar 

  • Lakshmanaprabu S, Elhoseny M, Shankar K (2019) Optimal tuning of decentralized fractional order PID controllers for TITO process using equivalent transfer function. Cogn Syst Res 58:292–303. https://doi.org/10.1016/j.cogsys.2019.07.005

    Article  Google Scholar 

  • Lakshmi M, Hemamalini S (2018) Decoupled control of grid connected photovoltaic system using fractional order controller. Ain Shams Eng J 9:927–937. https://doi.org/10.1016/j.asej.2016.06.002

    Article  Google Scholar 

  • Liang L (2011) The application of fuzzy PID controller in coupled-tank liquid-level control system. In: 2011 international conference on electronics, communications and control (ICECC). IEEE, pp 2894–2897

  • Liu L, Tian S, Xue D, Zhang T, Chen YQ, Zhang S (2019a) A review of industrial MIMO decoupling control. Int J Control Autom Syst 17:1246–1254. https://doi.org/10.1007/s12555-018-0367-4

    Article  Google Scholar 

  • Liu W, Bian GB, Rahman MRU, Zhang H, Chen H, Wu W (2019b) Fractional-order PID servo control based on decoupled visual model. Int J Adapt Control Signal Process 33:1265–1280

    Article  Google Scholar 

  • Luan Vu TN, Lee M (2009) Independent design of multi-loop PI/PID controllers for multi-delay processes. World Acad Sci Eng Technol 36:704–709

    Google Scholar 

  • Luyben WL (1970) Distillation decoupling. AIChE J 16:198–203. https://doi.org/10.1002/aic.690160209

    Article  Google Scholar 

  • Luyben WL (1986) Simple method for tuning SISO controllers in multivariable systems. Ind Eng Chem Process Des Dev 25:654–660. https://doi.org/10.1021/i200034a010

    Article  Google Scholar 

  • Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  • Nasirpour N, Balochian S (2017) Optimal design of fractional-order PID controllers for multi-input multi-output (variable air volume) air-conditioning system using particle swarm optimization. Intell Build Int 9:107–119. https://doi.org/10.1080/17508975.2016.1170659

    Article  Google Scholar 

  • Pereira RD, Veronesi M, Visioli A, Normey-Rico JE, Torrico BC (2017) Implementation and test of a new autotuning method for PID controllers of TITO processes. Control Eng Pract 58:171–185. https://doi.org/10.1016/j.conengprac.2016.10.010

    Article  Google Scholar 

  • Porter B, Jones AH (1992) Genetic tuning of digital PID controllers. Electron Lett 28:843–844. https://doi.org/10.1049/el:19920533

    Article  Google Scholar 

  • Ross B (1977) The development of fractional calculus 1695–1900. Hist Math 4:75–89. https://doi.org/10.1016/0315-0860(77)90039-8

    Article  MathSciNet  Google Scholar 

  • Roy P, Roy BK (2016) Fractional order PI control applied to level control in coupled two tank MIMO system with experimental validation. Control Eng Pract 48:119–135. https://doi.org/10.1016/j.conengprac.2016.01.002

    Article  Google Scholar 

  • Sharma A, Sharma A, Choudhary S, Pachauri RK, Shrivastava A, Kumar D (2020) A review on artificial bee colony and it’s engineering applications. J Crit Rev 7:4097–4107

    Google Scholar 

  • Shen SH, Yu CC (1994) Use of relay-feedback test for automatic tuning of multivariable systems. AIChE J 40:627–646

    Article  Google Scholar 

  • Tavakoli S, Griffin I, Fleming PJ (2006) Tuning of decentralised PI (PID) controllers for TITO processes. Control Eng Pract 14:1069–1080. https://doi.org/10.1016/j.conengprac.2005.06.006

    Article  Google Scholar 

  • Tian Z (2020) Backtracking search optimization algorithm-based least square support vector machine and its applications. Eng Appl Artif Intell 94:103801

    Article  Google Scholar 

  • Tian Z (2021) Modes decomposition forecasting approach for ultra-short-term wind speed. Appl Soft Comput 105:107303

    Article  Google Scholar 

  • Tian Z, Chen H (2021a) Multi-step short-term wind speed prediction based on integrated multi-model fusion. Appl Energy 298:117248

    Article  Google Scholar 

  • Tian Z, Chen H (2021b) A novel decomposition-ensemble prediction model for ultra-short-term wind speed. Energy Conver Manag 248:114775

    Article  Google Scholar 

  • Tian Z, Li H, Li F (2021) A combination forecasting model of wind speed based on decomposition. Energy Rep 7:1217–1233

    Article  Google Scholar 

  • Wang Z, Huang H (2020) Research on temperature control system of distillation column based on ABC-PID. J Phys Conf Ser 1549:42097

    Article  Google Scholar 

  • Wang JS, Li SX (2017) PID decoupling controller design for electroslag remelting process using cuckoo search algorithm with self-tuning dynamic searching mechanism. Eng Lett 25:125–133

  • Wang QG, Huang B, Guo X (2000) Auto-tuning of TITO decoupling controllers from step tests. ISA Trans 39:407–418. https://doi.org/10.1016/S0019-0578(00)00028-8

    Article  Google Scholar 

  • Wang JS, Ning CX, Yang Y (2014) Multivariable PID decoupling control method of electroslag remelting process based on improved particle swarm optimization (PSO) algorithm. Information (Switzerland) 5:120–133. https://doi.org/10.3390/info5010120

    Article  Google Scholar 

  • Wood R, Berry M (1973) Terminal composition control of a binary distillation column. Chem Eng Sci 28:1707–1717. https://doi.org/10.1016/0009-2509(73)80025-9

    Article  Google Scholar 

  • Zhu G, Kwong S (2010) Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl Math Comput 217:3166–3173. https://doi.org/10.1016/j.amc.2010.08.049

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

C. Ben Djaballah, W. Nouibat, and R. Ayad contributed to the design and implementation of the research, to the analysis of the results, and to the writing of the manuscript.

Corresponding author

Correspondence to Chouaib Ben Djaballah.

Ethics declarations

Conflict of interest

C. Ben Djaballah, W. Nouibat, and R. Ayad state that there are no conflicts of interest. The authors have no financial or proprietary interests in any material discussed in this article.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Djaballah, C., Nouibat, W. & Ayad, R. Optimization of fractional-order PI-PID controllers for MIMO systems using artificial bee colony algorithm. Soft Comput (2024). https://doi.org/10.1007/s00500-024-09776-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00500-024-09776-y

Keywords

Navigation