Log in

Asymmetric normalized probabilistic linguistic term set based on prospect theory and its application to multi-attribute decision-making

  • Fuzzy systems and their mathematics
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The probabilistic linguistic term set (PLTS) shows great superiority in expressing decision-makers’ opinions. The multi-attribute decision-making (MADM) problem under a PLTS environment has gained attention from numerous scholars. However, the majority of current studies are not precise enough in capturing information on PLTS. To address this problem, this paper presents a preference ranking organization method for enrichment of evaluations (PROMETHEE) based on the redefined PLTS and novel score function to solve MADM problems under a PLTS environment. First, an asymmetric normalized PLTS based on prospect theory (ANPLTSPT) is developed. Compared with the PLTS, ANPLTSPT offers a more realistic portrayal of decision-makers’ psychological state while ensuring the superiority of the PLTS. Second, regarding the structural complexity of ANPLTSPT, this paper attempts to simplify the computational process through a score function that can embody the characteristics of ANPLTSPT. Inspired by previously formulated score functions, a novel score function called Score-InInHe is developed, the corresponding definitions are given, and some further properties are discussed. With the support of the proposed Score-InInHe, the total score entropy is defined and an objective method to determine the attribute weights is proposed. Finally, the proposed approach is applied to the selection of a green supplier and the determination of air quality. The validity and realistic applicability of the proposed approach are demonstrated through comparative analyses and discussions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  • Bao GY, Lian XL, He M, Wang LL (2010) Improved two-tuple linguistic representation model based on new linguistic evaluation scale. Control Decis 25(5):780–784

    MathSciNet  Google Scholar 

  • Behzadian M, Kazemzadeh RB, Albadvi A, Aghdasi M (2010) PROMETHEE: a comprehensive literature review on methodologies and applications. Eur J Oper Res 200(1):198–215

    MATH  Google Scholar 

  • Brans JP, Vincke PA (1985) A preference ranking organization method: the PROMETHEE method for MCDM. Manage Sci 31(6):647–656

    MATH  Google Scholar 

  • Brans JP, Vincke P, Mareschal P (1986) How to select and how to rank projects: the PROMETHEE method. Eur J Oper Res 24:228–238

    MathSciNet  MATH  Google Scholar 

  • Chen X, Wang XJ, Zhou MM (2019) Firms’ green R&D cooperation behaviour in a supply chain: technological spillover, power and coordination. Int J Prod Econ 218:118–134

    Google Scholar 

  • Chen PY (2021) Effects of the entropy weight on TOPSIS. Expert Syst Appl 168:114186

    Google Scholar 

  • Deng J, Zhan JM, Herrera-Viedma E, Herrera F (2022a) Regret theory-based three-way decision method on incomplete multi-scale decision information systems with interval fuzzy numbers. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2022.3193453

    Article  Google Scholar 

  • Deng J, Zhan JM, Ding WP, Liu PD, Pedrycz W (2022b) A novel prospect-theory-based three-way decision methodology in multi-scale information systems. Artif Intell Rev. https://doi.org/10.1007/s10462-022-10339-6

    Article  Google Scholar 

  • Deng J, Zhan JM, Xu ZS, Herrera-Viedma E (2022c) Regret-theoretic multiattribute decision-making model using three-way framework in multiscale information systems. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2022.3173374

    Article  Google Scholar 

  • Ding QY, Wang YM, Goh M (2021) An extended TODIM approach for group emergency decision making based on bidirectional projection with hesitant triangular fuzzy sets. Comput Ind Eng 151:106959

    Google Scholar 

  • Feng XQ, Zhang Q, ** LS (2020) Aggregation of pragmatic operators to support probabilistic linguistic multi-criteria group decision-making problems. Soft Comput 24(10):7735–7755

    MATH  Google Scholar 

  • Golany B, Kress M (1993) A multicriteria evaluation of methods for obtaining weights from ratio-scale matrices. Eur J Oper Res 69:210–220

    MATH  Google Scholar 

  • Guo YJ (2012) Comprehensive evaluation theory, methods and extensions. Science Press, Bei**g

    Google Scholar 

  • Han XR, Zhang C, Zhan JM (2022) A three-way decision method under probabilistic linguistic term sets and its application to Air Quality Index. Inf Sci 617:254–276

    Google Scholar 

  • Han XR, Zhan JM (2023) A sequential three-way decision-based group consensus method under probabilistic linguistic term sets. Inf Sci 624:567–589

    Google Scholar 

  • Huang XF, Zhan JM, Xu ZS, Fujita H (2023) A prospect-regret theory-based three-way decision model with intuitionistic fuzzy numbers under incomplete multi-scale decision information systems. Expert Syst Appl 214:119144

    Google Scholar 

  • Hwang CL, Yoon KP (1981) Multiple attribute decision making: Methods and applications. Springer, New York

    MATH  Google Scholar 

  • Kahneman D, Tversky A (1979) Prospect theory: an analysis of decision under risk. Econometrica 47(2):263–291

    MathSciNet  MATH  Google Scholar 

  • Leoneti AB, Gomes LFAM (2021) A novel version of the TODIM method based on the exponential model of prospect theory: the ExpTODIM method. Eur J Oper Res 295(3):1042–1055

    MathSciNet  MATH  Google Scholar 

  • Liang DC, Wang MW, Xu ZS, Liu D (2020) Risk appetite dual hesitant fuzzy three-way decisions with TODIM. Inf Sci 507:585–605

    MathSciNet  MATH  Google Scholar 

  • Liang W, Wang YM (2021) A probabilistic interval-valued hesitant fuzzy gained and lost dominance score method based on regret theory. Comput Ind Eng 159:107532

    Google Scholar 

  • Liao HC, Qin R, Gao CY, Wu XL, Hafezalkotob A, Herrera F (2019) Score-HeDLiSF: a score function of hesitant fuzzy linguistic term set based on hesitant degrees and linguistic scale functions: an application to unbalanced hesitant fuzzy linguistic MULTIMOORA. Inf Fusion 48:39–54

    Google Scholar 

  • Lin MW, Chen ZY, Liao HC, Xu ZS (2019) ELECTRE II method to deal with probabilistic linguistic term sets and its application to edge computing. Nonlinear Dyn 96(3):2125–2143

    MATH  Google Scholar 

  • Lin MW, Chen ZY, Xu ZS, Gou XJ, Herrera F (2021) Score function based on concentration degree for probabilistic linguistic term sets: an application to TOPSIS and VIKOR. Inf Sci 551:270–290

    MathSciNet  Google Scholar 

  • Liu F, You QR, Hu YK, Pedrycz W (2022) Two flexibility degrees-driven consensus model in group decision making with intuitionistic fuzzy preference relations. Inf Fusion 88:86–99

    Google Scholar 

  • Luo L, Zhang C, Liao HC (2019) Distance-based intuitionistic multiplicative MULTIMOORA method integrating a novel weight-determining method for multiple criteria group decision making. Comput Ind Eng 131:82–98

    Google Scholar 

  • Pang Q, Wang H, Xu ZS (2016) Probabilistic linguistic term sets in multi-attribute group decision making. Inf Sci 369:128–143

    Google Scholar 

  • Pei Z, Zheng L (2017) New unbalanced linguistic scale sets: the linguistic information representations and applications. Comput Ind Eng 105:377–390

    Google Scholar 

  • Poormirzaee R, Shahab H, Taghizadeh R (2022) Smart mining policy: integrating fuzzy-VIKOR technique and the Z-number concept to implement industry 4.0 strategies in mining engineering. Resour Policy 77:102768

    Google Scholar 

  • Pourabbasi M, Shokouhyar S (2022) Unveiling a novel model for promoting mobile phone waste management with a social media data analytical approach. Sustain Prod Consum 29:546–563

    Google Scholar 

  • Torra V (1996) Negation functions based semantics for ordered linguistic labels. Int J Intell Syst 11(11):975–988

    Google Scholar 

  • Wang JJ, Ma XL, Xu ZS, Pedrycz W, Zhan JM (2022a) A three-way decision method with prospect theory to multi-attribute decision-making and its applications under hesitant fuzzy environments. Appl Soft Comput 126:109283

    Google Scholar 

  • Wang JJ, Ma XL, Xu ZS, Zhan JM (2022b) Regret theory-based three-way decision model in hesitant fuzzy environments and its application to medical decision. IEEE Trans Fuzzy Syst 30(12):5361–5375

    Google Scholar 

  • Wang WJ, Zhan JM, Zhang C, Herrera-Viedma E, Kou G (2023) A regret-theory-based three-way decision method with a priori probability tolerance dominance relation in fuzzy incomplete information systems. Inf Fusion 89:382–396

    Google Scholar 

  • Wu XL, Liao HC, Xu ZS, Hafezalkotob A, Herrera F (2018) Probabilistic linguistic MULTIMOORA: a multicriteria decision making method based on the probabilistic linguistic expectation function and the improved Borda rule. IEEE Trans Fuzzy Syst 26(6):3688–3702

    Google Scholar 

  • Wu XL, Liao HC (2019) A consensus-based probabilistic linguistic gained and lost dominance score method. Eur J Oper Res 272(3):1017–1027

    MathSciNet  MATH  Google Scholar 

  • Xu ZS (2004) A method based on linguistic aggregation operators for group decision making with linguistic preference relations. Inf Sci 166:19–30

    MathSciNet  MATH  Google Scholar 

  • Xue WT, Xu ZS, Mi XM (2021) Solving hesitant fuzzy linguistic matrix game problems for multiple attribute decision making with prospect theory. Comput Ind Eng 161:107619

    Google Scholar 

  • Yang J, Xu ZS (2022) Matrix game-based approach for MADM with probabilistic triangular intuitionistic hesitant fuzzy information and its application. Comput Ind Eng 163:107787

    Google Scholar 

  • Yuan YY, Xu ZS, Zhang YX (2022) The DEMATEL-COPRAS hybrid method under probabilistic linguistic environment and its application in Third Party Logistics provider selection. Fuzzy Optim Decis Making 21:137–156

    MathSciNet  MATH  Google Scholar 

  • Zadeh LA (1974) The concept of a linguistic variable and its application to approximate reasoning. Inf Sci 8(3):199–249

    MathSciNet  MATH  Google Scholar 

  • Zhan JX, Wang WJ, Alcantud JCR, Zhan JM (2022) A three-way decision approach with prospect-regret theory via fuzzy set pair dominance degrees for incomplete information systems. Inf Sci 617:310–330

    Google Scholar 

  • Zhan JM, Wang JJ, Ding WP, Yao YY (2023a) Three-way behavioral decision making with hesitant fuzzy information systems: survey and challenges. IEEE/CAA J Automatica Sinica 10(2):330–350

    Google Scholar 

  • Zhan JM, Deng J, Xu ZS, Martınez L (2023b) A three-way decision methodology with regret theory via triangular fuzzy numbers in incomplete multi-scale decision information systems. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2023.3237646

    Article  Google Scholar 

  • Zhang K, Dai JH (2022) A novel TOPSIS method with decision-theoretic rough fuzzy sets. Inf Sci 608:1221–1244

    Google Scholar 

  • Zhou W, Xu ZS (2016) Generalized asymmetric linguistic term set and its application to qualitative decision making involving risk appetites. Eur J Oper Res 254(2):610–621

    MathSciNet  MATH  Google Scholar 

  • Zhou XG, He X (2022) Research on multi-criteria portfolio optimization of variable subscripts hesitant fuzzy linguistic based on cumulative prospect theory. Control Decis 37(9):2389–2398

    Google Scholar 

  • Zhu JX, Ma XL, Zhan JM (2022) A regret theory-based three-way decision approach with three strategies. Inf Sci 595:89–118

    Google Scholar 

  • Zhu JX, Ma XL, Martınez L, Zhan JM (2023) A probabilistic linguistic three-way decision method with regret theory via fuzzy c-means clustering algorithm. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2023.3236386

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by National Natural Science Foundation of China (#71872047).

Funding

This study was funded by National Natural Science Foundation of China; (71872047).

Author information

Authors and Affiliations

Authors

Contributions

JZ: conceptualization, methodology, and writing. ML: software, data curation, and formal analysis. JL: supervision, and validation.

Corresponding author

Correspondence to Meijuan Li.

Ethics declarations

Conflict of interest

All the authors of this research paper declare that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A.1 The proof of Theorem 1 (1)

Proof

For \(\# L_{A} \left( p \right) = 1\), \(F\left( {L_{A} \left( p \right)} \right) = 1 + \log_{2} \left( {1 + p^{\left( 1 \right)} } \right)\). Then, \(\partial F\left( {L_{A} \left( p \right)} \right)/\partial \# L_{A} \left( p \right) = 0\).

For \(\# L_{A} \left( p \right) \ne 1\),

\(\partial F\left( {L_{A} \left( p \right)} \right)/\partial \# L_{A} \left( p \right) = \partial \left( {\frac{1}{{\left( {2\left( {1 + \log_{2} \# L_{A} \left( p \right)} \right)} \right)}}} \right)/\partial \# L_{A} \left( p \right) = - \frac{1}{{\left( {2\left( {1 + \log_{2} \# L_{A} \left( p \right)} \right)^{2} \cdot \# L_{A} \left( p \right) \cdot \ln 2} \right)}}\).

As \(\# L_{A} \left( p \right) \in N^{ + }\), then \(\# L_{A} \left( p \right) \cdot \ln 2 > 0\).

As \(\# L_{A} \left( p \right) \ne 1\), then \(\left( {1 + \log_{2} \# L_{A} \left( p \right)} \right)^{2} > 0\).

Thus, \(\partial F\left( {L_{A} \left( p \right)} \right)/\partial \# L_{A} \left( p \right) = - \frac{1}{{\left( {2\left( {1 + \log_{2} \# L_{A} \left( p \right)} \right)^{2} \cdot \# L_{A} \left( p \right) \cdot \ln 2} \right)}} < 0\) holds for \(\# L_{A} \left( p \right) \ne 1\).

Then, \(\partial F\left( {L_{A} \left( p \right)} \right)/\partial \# L_{A} \left( p \right) \le 0\) holds for \(\# L_{A} \left( p \right) \in N^{ + }\). Thus, it can be derived that the novel score function \(F\left( {L_{A} \left( p \right)} \right)\) for \(L_{A} \left( p \right)\) is a decreasing function of parameter \(\# L_{A} \left( p \right)\).

The proof of Theorem 1 (1) is completed. □

1.2 A.2 The proof of Theorem 1 (2)

Proof

\(F\left( {L_{A} \left( p \right)} \right)\) strives for the partial derivative with respect to \(\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right).}\)

\(\begin{aligned} \frac{{\partial F\left( {{L_A}\left( p \right)} \right)}}{{\partial \sum\limits_{k = 1}^{\# {L_A}\left( p \right)} {{p^{\left( k\right)}}} }} = \frac{1}{{\left( {1 + \sum\limits_{k = 1}^{\# {L_A}\left( p \right)} {{p^{\left( k \right)}}} } \right) \cdot \ln 2}} - \frac{{\sum\limits_{k = 1}^{\# {L_A}\left( p \right)} {{r_A}^{\left( k \right)}{p^{\left( k \right)}}} }}{{\tau {{\left({\sum\limits_{k = 1}^{\# {L_A}\left( p \right)} {{p^{\left( k \right)}}} } \right)}^2}}} + \frac{{\sum\limits_{k = 1}^{\#{L_A}\left( p \right)} {\left( {{p^{\left( k \right)}}{{\left( {{r_A}^{\left( k \right)}} \right)}^2}} \right)} }}{{8{\tau ^2}{{\left({\sum\limits_{k = 1}^{\# {L_A}\left( p \right)} {{p^{\left( k \right)}}} } \right)}^2}}} - \frac{{{{\left( {\sum\limits_{k = 1}^{\#{L_A}\left( p \right)} {{r_A}^{\left( k \right)}{p^{\left( k \right)}}} } \right)}^2}}}{{4{\tau ^2}{{\left( {\sum\limits_{k = 1}^{\#{L_A}\left( p \right)} {{p^{\left( k \right)}}} } \right)}^3}}} = {1 \mathord{\left/{\vphantom {1 {\left( {\left( {1 + \sum\limits_{k = 1}^{\# {L_A}\left( p \right)} {{p^{\left( k \right)}}} } \right) \cdot \ln 2} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {\left( {1 + \sum\limits_{k = 1}^{\# {L_A}\left( p \right)} {{p^{\left( k \right)}}} } \right)\cdot \ln 2} \right)}} + {{\left( {\sum\limits_{k = 1}^{\# {L_A}\left( p \right)} {{p^{\left( k \right)}}} \sum\limits_{k = 1}^{\#{L_A}\left( p \right)} {\left( {{p^{\left( k \right)}}{{\left( {{r_A}^{\left( k \right)}} \right)}^2}} \right)} - 2{{\left({\sum\limits_{k = 1}^{\# {L_A}\left( p \right)} {{r_A}^{\left( k \right)}{p^{\left( k \right)}}} } \right)}^2} - 8\tau\sum\limits_{k = 1}^{\# {L_A}\left( p \right)} {{p^{\left( k \right)}}} \sum\limits_{k = 1}^{\# {L_A}\left( p \right)} {{r_A}^{\left( k \right)}{p^{\left( k \right)}}} } \right)} \mathord{\left/{\vphantom {{\left( {\sum\limits_{k = 1}^{\# {L_A}\left( p \right)} {{p^{\left( k \right)}}} \sum\limits_{k = 1}^{\#{L_A}\left( p \right)} {\left( {{p^{\left( k \right)}}{{\left( {{r_A}^{\left( k \right)}} \right)}^2}} \right)} - 2{{\left({\sum\limits_{k = 1}^{\# {L_A}\left( p \right)} {{r_A}^{\left( k \right)}{p^{\left( k \right)}}} } \right)}^2} - 8\tau\sum\limits_{k = 1}^{\# {L_A}\left( p \right)} {{p^{\left( k \right)}}} \sum\limits_{k = 1}^{\# {L_A}\left( p \right)}{{r_A}^{\left( k \right)}{p^{\left( k \right)}}} } \right)} {\left( {8{\tau ^2}{{\left( {\sum\limits_{k = 1}^{\# {L_A}\left( p \right)} {{p^{\left( k \right)}}} } \right)}^3}} \right)}}} \right.\kern-\nulldelimiterspace} {\left( {8{\tau ^2}{{\left( {\sum\limits_{k = 1}^{\# {L_A}\left( p \right)} {{p^{\left( k \right)}}} }\right)}^3}} \right)}} \end{aligned}\)

Let \(R = \mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} \mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} \left( {p^{\left( k \right)} \left( {r_{A}^{\left( k \right)} } \right)^{2} } \right) - 2\left( {\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} r_{A}^{\left( k \right)} p^{\left( k \right)} } \right)^{2} - 8\tau \mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} \mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} r_{A}^{\left( k \right)} p^{\left( k \right)}\).

Then, \(\partial R/\partial \mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} = \mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} \left( {p^{\left( k \right)} \left( {r_{A}^{\left( k \right)} } \right)^{2} } \right) - 8\tau \mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} r_{A}^{\left( k \right)} p^{\left( k \right)} = Q\).

As \(\partial Q/\partial \mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} \left( {p^{\left( k \right)} \left( {r_{A}^{\left( k \right)} } \right)^{2} } \right) = 1 > 0\),

\(Q\) is a monotonically increasing function for \(\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} \left( {p^{\left( k \right)} \left( {r_{A}^{\left( k \right)} } \right)^{2} } \right)\).

As \(p^{\left( k \right)} > 0\) and \(\left( {r_{A}^{\left( k \right)} } \right)^{2} \ge 0\), then \(\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} \left( {p^{\left( k \right)} \left( {r_{A}^{\left( k \right)} } \right)^{2} } \right) \ge 0\).

For \(\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} \left( {p^{\left( k \right)} \left( {r_{A}^{\left( k \right)} } \right)^{2} } \right) = 0\), \(r_{A}^{\left( k \right)} = 0\) holds for \(\forall k\).

Therefore, \(\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} r_{A}^{\left( k \right)} p^{\left( k \right)} = 0\) when \(\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} \left( {p^{\left( k \right)} \left( {r_{A}^{\left( k \right)} } \right)^{2} } \right) = 0\).

Then, \(Q = 0\) when \(\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} \left( {p^{\left( k \right)} \left( {r_{A}^{\left( k \right)} } \right)^{2} } \right) = 0\). Hence, \(Q \ge 0\).

Thus, \(R\) is an increasing function for \(\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)}\).

For \(\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} = 0\), \(p^{\left( k \right)} = 0\) holds for \(\forall k\).

Therefore, \(R = 0\) when \(\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} = 0\).

As \(\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} \in \left( {0,} \right.\left. 1 \right]\), then \(R > 0\).

As \(1/\left( {\ln 2 \cdot \left( {1 + \mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} } \right)} \right) > 0\) and \(8\tau^{2} \left( {\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} } \right)^{3} > 0\).

Hence, \(\partial F\left( {L_{A} \left( p \right)} \right)/\partial \mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} > 0\), which can be derived that the novel score function \(F\left( {L_{A} \left( p \right)} \right)\) for \(L_{A} \left( p \right)\) is an increasing function of parameter \(\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)}\).

The proof of Theorem 1 (2) is completed.□

1.3 A.3 The proof of Theorem 1 (3)

Proof

According to Theorems 1 (1) and 1 (2),when \(F\left( {L_{A} \left( p \right)} \right)\) reaches the maximum value, \(\# L_{A} \left( p \right) = 1\) and \(\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} = 1\).

Hence, it can be obtained that \((r_{A}^{\left( k \right)} )_{{{\text{max}}}} = \tau\), \(\left( {E\left( {L_{A} \left( p \right)} \right)} \right)_{{{\text{max}}}} = 1\), \(\sigma \left( {L_{A} \left( p \right)} \right) = 0\),\( \log_{2} \left( {1 + \mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} } \right) = 1 \), and \(1 - 1/\left( {1 + \log_{2} \# L_{A} \left( p \right)} \right) = 0\).

Then, \(F\left( {L_{A} \left( p \right)} \right)_{{{\text{max}}}} = 2\).

According to Theorems 1 (1) and 1 (2),when \(F\left( {L_{A} \left( p \right)} \right)\) reaches the minimum value, \(\# L_{A} \left( p \right)\) is infinitely close to \(+ \infty\), and \(\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)}\) is infinitely close to 0.

Hence, \(\log_{2} \left( {1 + \mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} } \right)\) is infinitely close to 0, and \(1 - 1/\left( {1 + \log_{2} \# L_{A} \left( p \right)} \right)\) is infinitely close to 1.

$$ E\left( {L_{A} \left( p \right)} \right) $$

\(= \left( {\frac{1}{2\tau }\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} r_{A}^{\left( k \right)} p^{\left( k \right)} + \frac{1}{2}\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} } \right)/\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} = 1/2 + \left( {\frac{1}{2\tau }\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} r_{A}^{\left( k \right)} p^{\left( k \right)} } \right)/\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)}\).

When \(\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)}\) is infinitely close to 0,

\(\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)}\) and \(\frac{1}{2\tau }\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} r_{A}^{\left( k \right)} p^{\left( k \right)}\) are both infinitely close to 0.

Then, expanding \(E\left( {L_{A} \left( p \right)} \right)\) to a continuous function, according to L’Hospital’s rule,

\(\left( {\frac{1}{2\tau }\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} r_{A}^{\left( k \right)} p^{\left( k \right)} } \right)/\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} = \left( {\frac{{\partial \left( {\frac{1}{2\tau }\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} r_{A}^{\left( k \right)} p^{\left( k \right)} } \right)}}{{\partial \left( {\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} } \right)}}} \right)/\left( {\frac{{\partial \left( {\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} } \right)}}{{\partial \left( {\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} } \right)}}} \right) = 0\).

Hence, when \(\# L_{A} \left( p \right)\) is infinitely close to \(+ \infty \) and \(\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} \) is infinitely close to 0, \(E\left( {L_{A} \left( p \right)} \right)\) is infinitely close to \(1/2\).

$$ \sigma \left( {L_{A} \left( p \right)} \right) $$

\(= \mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} \left( {r_{A}^{\left( k \right)} } \right)^{2} /\left( {4\tau^{2} \mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} } \right) + \left( {\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} r_{A}^{\left( k \right)} p^{\left( k \right)} } \right)^{2} /\left( {4\tau^{2} \left( {\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} } \right)^{2} } \right) - \left( {\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} r_{A}^{\left( k \right)} p^{\left( k \right)} } \right)^{2} /\left( {2\tau^{2} } \right)\).

When \(\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)}\) is infinitely close to 0,

\(\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)}\), \(\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} \left( {r_{A}^{\left( k \right)} } \right)^{2}\), and \(\left( {\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} r_{A}^{\left( k \right)} } \right)^{2}\) are all infinitely close to 0.

Then, expanding \(\sigma \left( {L_{A} \left( p \right)} \right)\) to a continuous function, according to L’Hospital’s rule, \(\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} \left( {r_{A}^{\left( k \right)} } \right)^{2} /\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} = \left( {\frac{{\partial \left( {\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} \left( {r_{A}^{\left( k \right)} } \right)^{2} } \right)}}{{\partial \left( {\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} } \right)}}} \right)/\left( {\frac{{\partial \left( {\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} } \right)}}{{\partial \left( {\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} } \right)}}} \right) = 0 \)and \(\left( {\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} r_{A}^{\left( k \right)} p^{\left( k \right)} } \right)^{2} /\left( {\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} } \right)^{2} = \left( {\frac{{\partial \left( {\left( {\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} r_{A}^{\left( k \right)} p^{\left( k \right)} } \right)^{2} } \right)}}{{\partial \left( {\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} } \right)}}} \right)/\left( {\frac{{\partial \left( {\left( {\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} } \right)^{2} } \right)}}{{\partial \left( {\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)} } \right)}}} \right) = 0\).

Hence, when \(\# L_{A} \left( p \right)\) is infinitely close to \(+ \infty\) and \(\mathop \sum \nolimits_{k = 1}^{{\# L_{A} \left( p \right)}} p^{\left( k \right)}\) is infinitely close to 0, \(\sigma \left( {L_{A} \left( p \right)} \right)\) is infinitely close to \(0\).

Then, when \(F\left( {L_{A} \left( p \right)} \right)\) reaches the minimum value, \(F\left( {L_{A} \left( p \right)} \right)\) is infinitely close to \(0\).

Thus, \(F\left( {L_{A} \left( p \right)} \right) \in \left( {0,\left. 2 \right]} \right.\) holds.

The proof of Theorem 1 (3) is completed. □

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Li, M. & Lu, J. Asymmetric normalized probabilistic linguistic term set based on prospect theory and its application to multi-attribute decision-making. Soft Comput 27, 10427–10445 (2023). https://doi.org/10.1007/s00500-023-08495-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-023-08495-0

Keywords

Navigation