Log in

Die von Serotoninrezeptor 1A modulierte Dephosphorylierung des Glyzinrezeptors α3

Ein neuer molekularer Mechanismus der Atmungskontrolle zur Kompensation opioidinduzierter Atemdepression ohne Verlust der Analgesie

Serotonin receptor 1A-modulated dephosphorylation of glycine receptor α3

A new molecular mechanism of breathing control for compensation of opioid-induced respiratory depression without loss of analgesia

  • Übersichten
  • Published:
Der Schmerz Aims and scope Submit manuscript

Zusammenfassung

Zur Steuerung von Atembewegungen generiert das medulläre respiratorische Netzwerk periodische Salvenaktivitäten für die Inspiration, Postinspiration und Exspiration. Diese stehen unter ständiger modulatorischer Kontrolle durch serotonerge Neurone der Raphé, wodurch u. a. der Phosphorylierungsgrad des inhibitorischen Glyzinrezeptors α3 geregelt wird. Die spezifische Aktivierung des in den respiratorischen Neuronen stark exprimierten Serotoninrezeptors vom Typ 1A (5-HTR1A) bewirkt über die Hemmung der Adenylatzyklase und das resultierende Absenken des intrazellulären cAMP-Spiegels eine allmähliche Dephosphorylierung des Glyzinrezeptors vom Typ α3 (GlyRα3). Dieser 5-HTR1A-GlyRα3-Signalweg verläuft unabhängig vom μ-opioidergen Transduktionsweg und löst über eine verstärkte GlyRα3 ausgelöste synaptische Hemmung nicht nur von erregenden, sondern auch von hemmenden Neuronen, also auch eine Disinhibition mancher Zielneurone aus. Unsere physiologischen Untersuchungen zeigten, dass diese 5-HTR1A-GlyRα3-Modulation eine Behandlung der durch Opioide ausgelösten Atemdepression ermöglicht, ohne die erwünschte analgetische Wirkung der Opioide aufzuheben. Die hier dargestellten molekularen Mechanismen eröffnen neue pharmakologische Interventionsmöglichkeiten, um sowohl opioidinduzierte Atemdepression als auch Atmungsstörungen, welche ätiologisch auf einer gestörten inhibitorischen synaptischen Transmission beruhen, wie z. B. die Hyperekplexie, zu therapieren.

Abstract

To control the breathing rhythm the medullary respiratory network generates periodic salvo activities for inspiration, post-inspiration and expiration. These are under permanent modulatory control by serotonergic neurons of the raphe which governs the degree of phosphorylation of the inhibitory glycine receptor α3. The specific activation of serotonin receptor type 1A (5-HTR1A), which is strongly expressed in the respiratory neurons, functions via inhibition of adenylate cyclase and the resulting reduction of the intracellular cAMP level and a gradual dephosphorylation of the glycine receptor type α3 (GlyRα3). This 5-HTR1A-GlyRα3 signal pathway is independent of the µ-opioidergic transduction pathway and via a synaptic inhibition caused by an increase in GlyRα3 stimulates a disinhibition of some target neurons not only from excitatory but also from inhibitory neurons. Our physiological investigations show that this 5-HTR1A-GlyRα3 modulation allows treatment of respiratory depression due to opioids without affecting the desired analgesic effects of opioids. The molecular mechanism presented here opens new pharmacological possibilities to treat opioid-induced respiratory depression and respiratory disorders due to disturbed inhibitory synaptic transmission, such as hyperekplexia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Abbreviations

AC:

Adenylatzyklase

ACSF:

„artificial cerebrospinal fluid”

5-HT:

5-Hydroxytryptamin (Serotonin)

5-HTR:

Serotoninrezeptor

5-HTR1A :

Serotonin-1A-Rezeptor

BötC:

Bötzinger-Komplex

BSA:

Bovines Serum-Albumin

cAMP:

Zyklisches 3‘, 5‘-Adenosinmonophosphat

EDTA:

Ethylendiamintetraazetat

eGFP:

„enhanced green fluorescent protein“

GlyR:

Glyzinrezeptor

GlyRα3:

α3-Untereinheit des inhibitorischen Glyzinrezeptors

GlyT2:

Neuronaler Glyzintransporter 2

GlyT2-eGFP:

GlyT2-Promotor

GPCR:

G-Protein-gekoppelter Rezeptor

IOPr :

Nucleus olivaris principalis

KG:

Körpergewicht

KO:

knockout

mRNA:

„messenger ribonucleic acid“

NA:

Nucleus ambiguus

NaCl:

Natriumchlorid

NK-1R:

Neurokinin-1-Rezeptor

PBS:

„phosphate buffered saline“

PFA:

Paraformaldehyd

PKA:

Proteinkinase A

PNA:

N.-phrenicus-Aktivität

pre-BötC:

Pre-Bötzinger-Komplex

RT-PCR:

„reverse transcriptase polymerase chain reaction“

VRG:

Ventrale respiratorische Neuronen

ZNS:

Zentrales Nervensystem

Literatur

  1. Busselberg D, Bischoff AM, Paton JF, Richter DW (2001) Reorganisation of respiratory network activity after loss of glycinergic inhibition. Pflugers Arch 441:444–449

    Article  PubMed  CAS  Google Scholar 

  2. Busselberg D, Bischoff AM, Becker K et al (2001) The respiratory rhythm in mutant oscillator mice. Neurosci Lett 316:99–102

    Article  PubMed  CAS  Google Scholar 

  3. Busselberg D, Bischoff AM, Richter DW (2003) A combined blockade of glycine and calcium-dependent potassium channels abolishes the respiratory rhythm. Neuroscience 122:831–841

    Article  PubMed  CAS  Google Scholar 

  4. Celentano JJ, Gibbs TT, Farb DH (1988) Ethanol potentiates GABA- and glycine-induced chloride currents in chick spinal cord neurons. Brain Res 455:377–380

    Article  PubMed  CAS  Google Scholar 

  5. Connelly CA, Ellenberger HH, Feldman JL (1989) Are there serotonergic projections from raphe and retrotrapezoid nuclei to the ventral respiratory group in the rat? Neurosci Lett 105:34–40

    Article  PubMed  CAS  Google Scholar 

  6. Gomeza J, Ohno K, Hülsmann S et al (2003) Deletion of the mouse glycine transporter 2 results in a hyperekplexia phenotype and postnatal lethality. Neuron 40:797–806

    Article  PubMed  CAS  Google Scholar 

  7. Gray PA, Rekling JC, Bocchiaro CM, Feldman JL (1999) Modulation of respiratory frequency by peptidergic input to rhythmogenic neurons in the preBotzinger complex. Science 286:1566–1561

    Article  PubMed  CAS  Google Scholar 

  8. Harrison NL, Kugler JL, Jones MV et al (1993) Positive modulation of human γ-aminobutyric acid type A and glycine receptors by the inhalation anesthetic isoflurane. Mol Pharmacol 44:628–632

    PubMed  CAS  Google Scholar 

  9. Harvey RJ, Depner UB, Wässle H et al (2004) GlyR α3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 304:884–887

    Article  PubMed  CAS  Google Scholar 

  10. Heindl C, Brune K, Renner B (2007) Kinetics and functional characterization of the glycine receptor alpha2 and alpha3 subunit. Neurosci Lett 429:59–63

    Article  PubMed  CAS  Google Scholar 

  11. Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71:533–554

    Article  PubMed  CAS  Google Scholar 

  12. Lalley PM, Bischoff AM, Richter DW (1994a) 5-HT-1A receptor-mediated modulation of medullary expiratory neurones in the cat. J Physiol 476:117–130

    PubMed  CAS  Google Scholar 

  13. Lalley PM, Bischoff AM, Richter DW (1994b) Serotonin 1A-receptor activation suppresses respiratory apneusis in the cat. Neurosci Lett 172:59–62

    Article  PubMed  CAS  Google Scholar 

  14. Lalley PM, Pierrefiche O, Bischoff AM, Richter DW (1997) cAMP-dependent protein kinase modulates expiratory neurons in vivo. J Neurophysiol 77:1119–1131

    PubMed  CAS  Google Scholar 

  15. Manzke T, Dutschmann M, Schlaf G et al (2009) Serotonin targets inhibitory neurones to induce complex modulation of network functions. Philos Trans R Soc Lond B Biol Sci 364:2589–2602

    Article  PubMed  CAS  Google Scholar 

  16. Manzke T, Niebert M, Koch UR et al (2010) Serotonin receptor 1A-modulated phosphorylation of glycine receptor α3 controls breathing in mice. J Clin Invest 120:4118–4128

    Article  PubMed  CAS  Google Scholar 

  17. Markstahler U, Kremer E, Kimmina S et al (2002) Effects of functional knock-out of alpha 1 glycine-receptors on breathing movements in oscillator mice. Respir Physiol Neurobiol 130:33–34

    Article  PubMed  CAS  Google Scholar 

  18. Ogilvie MD, Gottschalk A, Anders K et al (1992) A network model of respiratory rhythmogenesis. Am J Physiol Cell Physiol 263:962–975

    Google Scholar 

  19. Paton JF (1996) A working heart-brainstem preparation of the mouse. J Neurosci Methods 65:63–68

    Article  PubMed  CAS  Google Scholar 

  20. Pierrefiche O, Schwarzacher SW, Bischoff AM, Richter DW (1998) Blockade of synaptic inhibition within the pre-Botzinger complex in the cat suppresses respiratory rhythm generation in vivo. J Physiol 509:245–254

    Article  PubMed  CAS  Google Scholar 

  21. Renner U, Glebov K, Lang T et al (2007) Localization of the mouse 5-hydroxytryptamine (1A) receptor in lipid microdomains depends on its palmitoylation and is involved in receptor-mediated signaling. Mol Pharmacol 72:502–513

    Article  PubMed  CAS  Google Scholar 

  22. Richter DW (1982) Generation and maintenance of the respiratory rhythm. J Exp Biol 100:93–107

    PubMed  CAS  Google Scholar 

  23. Richter DW (1996) Neural Regulation of Respiration: Rhythmogenesis and Afferent Control. Springer, New York

  24. Richter DW, Schmidt-Garcon P, Pierrefiche O et al (1999) Neurotransmitters and neuromodulators controlling the hypoxic respiratory response in anaesthetized cats. J Physiol 514:567–578

    Article  PubMed  CAS  Google Scholar 

  25. Richter DW, Spyer KM (2001) Studying rhythmogenesis of breathing: comparison of in vivo and in vitro models. Trends Neurosci 24:464–472

    Article  PubMed  CAS  Google Scholar 

  26. Richter DW, Manzke T, Wilken B, Ponimaskin E (2003) Serotonin receptors: guardians of stable breathing. Trends Mol Med 9:542–548

    Article  PubMed  CAS  Google Scholar 

  27. Richter DW, Bischoff A, Anders K et al (1991) Response of the medullary respiratory network of the cat to hypoxia. J Physiol 443:231–256

    PubMed  CAS  Google Scholar 

  28. Rybak IA, Shevtsova NA, Paton JFR et al (2004) Modeling the ponto-medullary respiratory network. Respir Physiol Neurobiol 143:307–319

    Article  PubMed  CAS  Google Scholar 

  29. Sahibzada N, Ferreira M, Wasserman AM et al (2000) Reversal of morphine-induced apnea in the anesthetized rat by drugs that activate 5-hydroxytryptamine1A receptors. J Pharmacol Exp Ther 292:704–713

    PubMed  CAS  Google Scholar 

  30. Schmid K, Bohmer G, Gebauer K (1991) Glycine receptor-mediated fast synaptic inhibition in the brainstem respiratory system. Respir Physiol Neurobiol 84:351–361

    CAS  Google Scholar 

  31. Schwarzacher SW, Rüb U, Deller T (2011) Neuroanatomical characteristics of the human pre-Bötzinger complex and its involvement in neurodegenerative brainstem diseases. Brain 134:24–35

    Article  PubMed  Google Scholar 

  32. Smith JC, Ellenberger HH, Ballanyi K et al (1991) Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254:726–729

    Article  PubMed  CAS  Google Scholar 

  33. Stettner GM, Huppke P, Brendel C et al (2007) Breathing dysfunctions associated with impaired control of postinspiratory activity in Mecp2-/y knockout mice. J Physiol 579:863–876

    Article  PubMed  CAS  Google Scholar 

  34. Stewart J, Howard RS, Rudd AG et al (1996) Apneustic breathing provoked by limbic influences. Postgrad Med J 72:559–561

    Article  PubMed  CAS  Google Scholar 

  35. Wilken B, Lalley P, Bischoff AM et al (1997) Treatment of apneustic respiratory disturbance with a serotonin-receptor agonist. J Pediatr 130:89–94

    Article  PubMed  CAS  Google Scholar 

  36. Zhang L, Zhao H, Qiu Y et al (2009) Src phosphorylation of micro-receptor is responsible for the receptor switching from an inhibitory to a stimulatory signal. J Biol Chem 284:1990–2000

    Article  PubMed  CAS  Google Scholar 

  37. Zeilhofer HU, Studler B, Arabadzisz D et al (2005) Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. J Comp Neurol 482:123–141

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Manzke.

Additional information

Dieser Beitrag basiert auf einer englischen Publikation: Manzke T, Niebert M, Koch UR et al (2010) Serotonin receptor 1A-modulated phosphorylation of glycine receptor α3 controls breathing in mice. J Clin Invest 120:4118–4128

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manzke, T., Niebert, M., Koch, U. et al. Die von Serotoninrezeptor 1A modulierte Dephosphorylierung des Glyzinrezeptors α3. Schmerz 25, 272–281 (2011). https://doi.org/10.1007/s00482-011-1044-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00482-011-1044-1

Schlüsselwörter

Keywords

Navigation