Log in

Complex network analysis and robustness evaluation of spatial variation of monthly rainfall

  • ORIGINAL PAPER
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Recently, complex network-based approaches are shown to be efficient for spatial analysis of rainfall variation. One of the most critical limitations of correlation-based networks is using some assumed threshold levels to identify the existence of links that lead to different topological and community structures. A hypothesis test is formulated for the robustness analysis of recovered community structures for monthly rainfall data of Tasmania, Australia. To this aim, variation of information (VI) curves are constructed for the original and random networks. Then Gaussian process regression method is applied for these curves at different correlation threshold values (i.e., 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, and 0.90) to obtain maximum likelihoods as forms of Bayes factors. The networks are analyzed on a local and global scale by using node strength, node efficiency, edge density, and global efficiency measures to reveal the features of the rainfall network in the basin. Mainly, local strengths and efficiencies show that the networks are more efficient for threshold values higher than of 0.70. Global measures (i.e., edge density and global efficiency) decrease as the threshold increases except for the threshold of 0.80. In a rainfall forecasting exercise, using the robust network with the threshold value of 0.80 increases the coefficient of determination, Nash–Sutcliffe, and Kling-Gupta efficiencies from 0.29, 0.27, and 0.43 to 0.41, 0.36, and 0.61, respectively, leading to about 41%, 33%, and 41% improvement. Therefore, the results could be useful for determining robust network structures for various hydrological purposes such as filling missing values, regional flood analysis, and forecasting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abbot J, Marohasy J (2014) Input selection and optimisation for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks. Atmos Res 138:166–178

    Google Scholar 

  • Abu Romman Z, Al-Bakri J, Al Kuisi M (2021) Comparison of methods for filling in gaps in monthly rainfall series in arid regions. Int J Climatol 41(15):6674–6689

    Google Scholar 

  • Agarwal A, Marwan N, Maheswaran R, Merz B, Kurths J (2018) Quantifying the roles of single stations within homogeneous regions using complex network analysis. J Hydrol 563:802–810

    Google Scholar 

  • Agarwal A, Guntu RK, Banerjee A, Gadhawe MA, Marwan N (2022) A complex network approach to study the extreme precipitation patterns in a river basin. Chaos Interdiscip J Nonlinear Sci 32(1):013113

    Google Scholar 

  • Aldecoa R, Marin I (2012) Closed benchmarks for network community structure characterization. Phys Rev E 85(2):026109

    ADS  Google Scholar 

  • Ali MZM, Othman F (2018) Raingauge network optimization in a tropical urban area by coupling cross-validation with the geostatistical technique. Hydrol Sci J 63(3):474–491. https://doi.org/10.1080/02626667.2018.1437271

    Article  Google Scholar 

  • Allen KJ, Lee G, Ling F, Allie S, Willis M, Baker PJ (2015) Palaeohydrology in climatological context: develo** the case for use of remote predictors in Australian streamflow reconstructions. Appl Geogr 64:132–152

    Google Scholar 

  • Amponsah W, Dallan E, Nikolopoulos EI, Marra F (2022) Climatic and altitudinal controls on rainfall extremes and their temporal changes in data-sparse tropical regions. J Hydrol 612:128090. https://doi.org/10.1016/j.jhydrol.2022.128090

    Article  Google Scholar 

  • Angelini C, De Canditiis D, Mutarelli M, Pensky M (2007) A Bayesian approach to estimation and testing in time-course microarray experiments. Stat Appl Genet Mol Biol 6:85. https://doi.org/10.2202/1544-6115.1299

    Article  MathSciNet  Google Scholar 

  • Bellingeri M, Bevacqua D, Scotognella F, Zhe-Ming L, Cassi D (2018) Efficacy of local attack strategies on the Bei**g road complex weighted network. Phys A 510:316–328

    Google Scholar 

  • Bellingeri M, Bevacqua D, Scotognella F, Cassi D (2019) The heterogeneity in link weights may decrease the robustness of real-world complex weighted networks. Sci Rep 9(1):1–13

    Google Scholar 

  • Bender EA, Canfield ER (1978) The asymptotic number of labeled graphs with given degree sequences. J Comb Theory Series A 24(3):296–307

    MathSciNet  Google Scholar 

  • Bennett J, Ling F, Post D, Grose M, Corney S, Graham B, Holz G, Katzfey J, Bindoff N (2012) High-resolution projections of surface water availability for Tasmania. Aust Hydrol Earth Syst Sci 16(5):1287–1303

    ADS  Google Scholar 

  • Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 10:P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008

    Article  Google Scholar 

  • Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U (2006) Complex networks: structure and dynamics. Phys Rep 424(4–5):175–308

    ADS  MathSciNet  Google Scholar 

  • Bollobás B (2001) Random graphs. Cambridge University Press

    Google Scholar 

  • Carissimo A, Cutillo L, Feis ID (2018) Validation of community robustness. Comput Stat Data Anal 120:1–24. https://doi.org/10.1016/j.csda.2017.10.006

    Article  MathSciNet  Google Scholar 

  • Chen L, Singh VP, Guo S, Zhou J, Ye L (2014) Copula entropy coupled with artificial neural network for rainfall–runoff simulation. Stoch Env Res Risk Assess 28(7):1755–1767. https://doi.org/10.1007/s00477-013-0838-3

    Article  Google Scholar 

  • Chen L, Chen Y, Zhang Y, Xu S (2022) Spatial patterns of typhoon rainfall and associated flood characteristics over a mountainous watershed of a tropical island. J Hydrol 613:128421. https://doi.org/10.1016/j.jhydrol.2022.128421

    Article  Google Scholar 

  • Cheng M, Fang F, Kinouchi T, Navon IM, Pain CC (2020) Long lead-time daily and monthly streamflow forecasting using machine learning methods. J Hydrol 590:125376. https://doi.org/10.1016/j.jhydrol.2020.125376

    Article  Google Scholar 

  • Cheung KKW, Ozturk U (2020) Synchronization of extreme rainfall during the Australian summer monsoon: complex network perspectives. Chaos Interdiscip J Nonlinear Sci 30(6):063117. https://doi.org/10.1063/1.5144150

    Article  MathSciNet  Google Scholar 

  • Clauset A, Newman ME, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70(6):066111

    ADS  Google Scholar 

  • Conticello F, Cioffi F, Merz B, Lall U (2018) An event synchronization method to link heavy rainfall events and large-scale atmospheric circulation features. Int J Climatol 38(3):1421–1437

    Google Scholar 

  • Danon L, Diaz-Guilera A, Duch J, Arenas A (2005) Comparing community structure identification. J Stat Mech Theory Exp 09:P09008

    Google Scholar 

  • de Oliveira BCC, de Oliveira-Júnior JF, Pereira CR, Sobral BS, de Gois G, Lyra GB, Machado EA, Correia Filho WLF, de Souza A (2021) Spatiotemporal variation of dry spells in the state of Rio de Janeiro: geospatialization and multivariate analysis. Atmos Res 257:105612

    Google Scholar 

  • Deepthi B, Sivakumar B (2022) General circulation models for rainfall simulations: performance assessment using complex networks. Atmos Res 278:106333. https://doi.org/10.1016/j.atmosres.2022.106333

    Article  Google Scholar 

  • Ding C, Peng H (2005) Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol 03(02):185–205. https://doi.org/10.1142/s0219720005001004

    Article  CAS  Google Scholar 

  • Dittrich D, Leenders RTA, Mulder J (2019) Network autocorrelation modeling: a Bayes factor approach for testing (multiple) precise and interval hypotheses. Sociol Methods Res 48(3):642–676

    MathSciNet  Google Scholar 

  • Drissia T, Jothiprakash V, Sivakumar B (2022) Regional flood frequency analysis using complex networks. Stoch Env Res Risk Assess 36(1):115–135

    Google Scholar 

  • Duda RO, Hart PE, Stork DG (2001) Pattern classification. Wiley, New York

    Google Scholar 

  • Earl N, Remenyi TA, King A, Love PT, Rollins D, Harris RMB (2022) Changing compound rainfall events in Tasmania. Int J Climatol 43(1):538–557. https://doi.org/10.1002/joc.7791

    Article  Google Scholar 

  • Erdős P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5(1):17–60

    MathSciNet  Google Scholar 

  • Euler L (1741) Solutio problematis ad geometriam situs pertinentis. Commentarii Academiae Scientiarum Imperialis Petropolitanae 8:128–140

    Google Scholar 

  • Fagiolo G (2007) Clustering in complex directed networks. Phys Rev E 76(2):026107

    ADS  MathSciNet  Google Scholar 

  • Ghorbani MA, Karimi V, Ruskeepää H, Sivakumar B, Pham QB, Mohammadi F, Yasmin N (2021) Application of complex networks for monthly rainfall dynamics over central Vietnam. Stoch Env Res Risk Assess 35(3):535–548. https://doi.org/10.1007/s00477-020-01962-2

    Article  Google Scholar 

  • Grose M, Barnes-Keoghan I, Corney S, White C, Holz G, Bennett J, Gaynor S, Bindoff N (2010) Climate futures for Tasmania: general climate impacts technical report. Antarctic Climate & Ecosystems Cooperative Research Centre, Hobart, Australia

    Google Scholar 

  • Hammad M, Shoaib M, Salahudin H, Baig MAI, Khan MM, Ullah MK (2021) Rainfall forecasting in upper Indus basin using various artificial intelligence techniques. Stoch Env Res Risk Assess 35:2213–2235. https://doi.org/10.1007/s00477-021-02013-0

    Article  Google Scholar 

  • Han X, Sivakumar B, Woldmeskel FM, Guerra de Aguilar M (2018) Temporal dynamics of streamflow: application of complex networks. Geosci Lett 5(1):10. https://doi.org/10.1186/s40562-018-0109-8

    Article  ADS  Google Scholar 

  • He Z, Wen X, Liu H, Du J (2014) A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region. J Hydrol 509:379–386. https://doi.org/10.1016/j.jhydrol.2013.11.054

    Article  Google Scholar 

  • Hung NQ, Babel MS, Weesakul S, Tripathi N (2009) An artificial neural network model for rainfall forecasting in Bangkok. Thailand Hydrol Earth Syst Sci 13(8):1413–1425

    ADS  Google Scholar 

  • Jha SK, Sivakumar B (2017) Complex networks for rainfall modeling: spatial connections, temporal scale, and network size. J Hydrol 554:482–489

    Google Scholar 

  • Jha SK, Zhao H, Woldemeskel FM, Sivakumar B (2015) Network theory and spatial rainfall connections: an interpretation. J Hydrol 527:13–19

    Google Scholar 

  • Joo H, Lee M, Kim J, Jung J, Kwak J, Kim HS (2021) Stream gauge network grou** analysis using community detection. Stoch Env Res Risk Assess 35(4):781–795

    Google Scholar 

  • Kalaitzis AA, Lawrence ND (2011) A simple approach to ranking differentially expressed gene expression time courses through Gaussian process regression. BMC Bioinf 12:1–13

    Google Scholar 

  • Karrer B, Levina E, Newman ME (2008) Robustness of community structure in networks. Phys Rev E 77(4):046119

    ADS  Google Scholar 

  • Keast D, Ellison J (2013) Magnitude frequency analysis of small floods using the annual and partial series. Water 5(4):1816–1829

    Google Scholar 

  • Kim T-W, Ahn H (2009) Spatial rainfall model using a pattern classifier for estimating missing daily rainfall data. Stoch Env Res Risk Assess 23(3):367–376

    MathSciNet  Google Scholar 

  • Kim K, Joo H, Han D, Kim S, Lee T, Kim HS (2019) On complex network construction of rain gauge stations considering nonlinearity of observed daily rainfall data. Water 11(8):1578. https://doi.org/10.3390/w11081578

    Article  Google Scholar 

  • Lancichinetti A, Radicchi F, Ramasco JJ, Fortunato S (2011) Finding statistically significant communities in networks. PLoS ONE 6(4):e18961

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Latora V, Nicosia V, Russo G (2017) Complex networks: principles, methods and applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Meilă M (2007) Comparing clusterings—An information based distance. J Multivar Anal 98(5):873–895

    MathSciNet  Google Scholar 

  • Meilǎ M (2005) Comparing clusterings: An axiomatic view. In: Proceedings of the 22nd international conference on machine learning, pp 577–584

  • Michelon A, Benoit L, Beria H, Ceperley N, Schaefli B (2021) Benefits from high-density rain gauge observations for hydrological response analysis in a small alpine catchment. Hydrol Earth Syst Sci 25(4):2301–2325. https://doi.org/10.5194/hess-25-2301-2021

    Article  ADS  Google Scholar 

  • Naranjo-Fernández N, Guardiola-Albert C, Aguilera H, Serrano-Hidalgo C, Rodríguez-Rodríguez M, Fernández-Ayuso A, Ruiz-Bermudo F, Montero-González E (2020) Relevance of spatio-temporal rainfall variability regarding groundwater management challenges under global change: Case study in Doñana (SW Spain). Stoch Env Res Risk Assess 34(9):1289–1311

    Google Scholar 

  • Naufan I, Sivakumar B, Woldemeskel FM, Raghavan SV, Vu MT, Liong S-Y (2018) Spatial connections in regional climate model rainfall outputs at different temporal scales: application of network theory. J Hydrol 556:1232–1243. https://doi.org/10.1016/j.jhydrol.2017.05.029

    Article  Google Scholar 

  • Newman ME (2006) Finding community structure in networks using the eigenvectors of matrices. Phys Rev E 74(3):036104

    ADS  MathSciNet  CAS  Google Scholar 

  • Nguyen H-M, Bae D-H (2019) An approach for improving the capability of a coupled meteorological and hydrological model for rainfall and flood forecasts. J Hydrol 577:124014. https://doi.org/10.1016/j.jhydrol.2019.124014

    Article  Google Scholar 

  • Orsini C, Dankulov MM, Colomer-de-Simón P, Jamakovic A, Mahadevan P, Vahdat A, Bassler KE, Toroczkai Z, Boguná M, Caldarelli G (2015) Quantifying randomness in real networks. Nat Commun 6(1):8627

    ADS  CAS  PubMed  Google Scholar 

  • Ozturk U, Malik N, Cheung K, Marwan N, Kurths J (2019) A network-based comparative study of extreme tropical and frontal storm rainfall over Japan. Clim Dyn 53(1):521–532

    Google Scholar 

  • Pham BT, Le LM, Le T-T, Bui K-TT, Le VM, Ly H-B, Prakash I (2020) Development of advanced artificial intelligence models for daily rainfall prediction. Atmos Res 237:104845. https://doi.org/10.1016/j.atmosres.2020.104845

    Article  Google Scholar 

  • Pini A, Vantini S (2017) Interval-wise testing for functional data. J Nonparametr Stat 29(2):407–424

    MathSciNet  Google Scholar 

  • Pons P, Latapy M (2005) Computing communities in large networks using random walks. In: Computer and information sciences-ISCIS 2005: 20th international symposium, Istanbul, Turkey, October 26–28, 2005. Proceedings 20. Springer, pp. 284–293a

  • Raghavan UN, Albert R, Kumara S (2007) Near linear time algorithm to detect community structures in large-scale networks. Phys Rev E 76(3):036106

    ADS  Google Scholar 

  • Rand WM (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846–850

    Google Scholar 

  • Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. MIT Press, Cambridge

    Google Scholar 

  • Rehman SU, Khan K, Masood A, Khan AJ (2015) Dependence of winter runoff variability and Indian Ocean subtropical high: a case study over the Snug river catchment. Adv Environ Biol 9(11):79–85

    Google Scholar 

  • Rodríguez-Alarcón R, Lozano S (2019) A complex network analysis of Spanish river basins. J Hydrol 578:124065. https://doi.org/10.1016/j.jhydrol.2019.124065

    Article  Google Scholar 

  • Signorelli M, Cutillo L (2022) On community structure validation in real networks. Comput Stat 37(3):1165–1183

    MathSciNet  Google Scholar 

  • Sivakumar B, Woldemeskel FM (2015) A network-based analysis of spatial rainfall connections. Environ Model Softw 69:55–62. https://doi.org/10.1016/j.envsoft.2015.02.020

    Article  Google Scholar 

  • Strogatz SH (2001) Exploring complex networks. Nature 410(6825):268–276

    ADS  CAS  PubMed  Google Scholar 

  • Tiwari S, Jha SK, Singh A (2020) Quantification of node importance in rain gauge network: Influence of temporal resolution and rain gauge density. Sci Rep 10(1):9761

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Tongal H, Booij MJ (2017) Quantification of parametric uncertainty of ann models with GLUE method for different streamflow dynamics. Stoch Env Res Risk Assess 31(4):993–1010. https://doi.org/10.1007/s00477-017-1408-x

    Article  Google Scholar 

  • Tongal H, Sivakumar B (2019) Entropy analysis for spatiotemporal variability of seasonal, low, and high streamflows. Stoch Env Res Risk Assess 33(1):303–320. https://doi.org/10.1007/s00477-018-1615-0

    Article  Google Scholar 

  • Tongal H, Sivakumar B (2021) Forecasting rainfall using transfer entropy coupled directed–Weighted complex networks. Atmos Res 255:105531. https://doi.org/10.1016/j.atmosres.2021.105531

    Article  Google Scholar 

  • Tongal H, Sivakumar B (2022) Transfer entropy coupled directed–weighted complex network analysis of rainfall dynamics. Stoch Env Res Risk Assess 36(3):851–867. https://doi.org/10.1007/s00477-021-02091-0

    Article  Google Scholar 

  • Tumiran SA, Sivakumar B (2021) Catchment classification using community structure concept: application to two large regions. Stoch Env Res Risk Assess 35(3):561–578

    Google Scholar 

  • van Dongen S (2000) Performance criteria for graph clustering and Markov cluster experiments. In: Technical Report INS-R0012. National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam

  • Vercruysse K, Dawson DA, Glenis V, Bertsch R, Wright N, Kilsby C (2019) Develo** spatial prioritization criteria for integrated urban flood management based on a source-to-impact flood analysis. J Hydrol 578:124038. https://doi.org/10.1016/j.jhydrol.2019.124038

    Article  Google Scholar 

  • Wagner PD, Fiener P, Wilken F, Kumar S, Schneider K (2012) Comparison and evaluation of spatial interpolation schemes for daily rainfall in data scarce regions. J Hydrol 464–465:388–400. https://doi.org/10.1016/j.jhydrol.2012.07.026

    Article  Google Scholar 

  • Wang W, Wang D, Singh VP, Wang Y, Wu J, Wang L, Zou X, Liu J, Zou Y, He R (2018) Optimization of rainfall networks using information entropy and temporal variability analysis. J Hydrol 559:136–155. https://doi.org/10.1016/j.jhydrol.2018.02.010

    Article  Google Scholar 

  • Wilson JD, Wang S, Mucha PJ, Bhamidi S, Nobel AB (2014) A testing based extraction algorithm for identifying significant communities in networks. Ann Appl Stat 8(3):1853–1891

    MathSciNet  Google Scholar 

  • Xu Y, Lu F, Zhu K, Song X, Dai Y (2020) Exploring the clustering property and network structure of a large-scale basin’s precipitation network: a complex network approach. Water 12(6):1739

    Google Scholar 

  • Yasmin N, Sivakumar B (2021) Spatio-temporal connections in streamflow: a complex networks-based approach. Stoch Env Res Risk Assess 35:2375–2390. https://doi.org/10.1007/s00477-021-02022-z

    Article  Google Scholar 

  • Yuan M (2006) Flexible temporal expression profile modelling using the Gaussian process. Comput Stat Data Anal 51(3):1754–1764

    MathSciNet  Google Scholar 

  • Zhao Y, Zhang X, **ong F, Liu S, Wang Y, Liang C (2022) Acquisition of rainfall in ungauged basins: a study of rainfall distribution heterogeneity based on a new method. Nat Hazards 114:1723–1739. https://doi.org/10.1007/s11069-022-05444-2

    Article  Google Scholar 

Download references

Acknowledgements

Bellie Sivakumar acknowledges the support from the IIT Bombay seed grant (RD/0519-IRCCSH0-027).

Funding

This work was partially supported by IIT Bombay Seed Grant (RD/0519-IRCCSH0-027).

Author information

Authors and Affiliations

Authors

Contributions

HT: Conceptualization, Data curation, Investigation, Methodology, Formal analyses, Preparation of Figures, Writing–original draft, Writing–review & editing. BS: Conceptualization, Supervision, Writing–review & editing.

Corresponding author

Correspondence to Hakan Tongal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

The formulas of the performance indices for assessing the forecasting performance can be found below:

i. Coefficient of determination (\(R^{2}\))

$$R^{2} = \frac{{\left( {\sum\nolimits_{i = 1}^{N} {\left( {P_{i} - \overline{P}} \right)\left( {\hat{P}_{i} - \tilde{P}} \right)} } \right)^{2} }}{{\sum\nolimits_{i = 1}^{N} {\left( {P_{i} - \overline{P}} \right)^{2} \sum\nolimits_{i = 1}^{N} {\left( {\hat{P}_{i} - \tilde{P}} \right)^{2} } } }}$$
(23)

where \(N\) is the length of data set, \(\overline{P}\) and \(\tilde{P}\) are the mean values of observed and forecasted values, \(P_{i}\) and \(\hat{P}_{i}\) are observed and forecasted values, respectively. It varies between 0 (no relation) and 1 (perfect fit), and describes the amount of observed variance explained by the model.

ii. Nash–Sutcliffe efficiency (NSE)

$$NSE = 1 - \frac{{\sum\nolimits_{i = 1}^{N} {\left( {P_{i} - \hat{P}_{i} } \right)^{2} } }}{{\sum\nolimits_{i = 1}^{N} {\left( {P_{i} - \overline{P}} \right)^{2} } }}$$
(24)

NSE is the normalization of the forecasting error by the variance of the observed series. It varies between 1.0 (perfect fit) and \(- \infty\). A NSE value below zero indicates that the mean value of the observed series can be considered as a predictor model.

iii. Kling-Gupta efficiency (KGE)

$$KGE = 1 - \sqrt {\left( {r - 1} \right)^{2} + \left( {\alpha - 1} \right)^{2} + \left( {\beta - 1} \right)^{2} }$$
(25)

where \(r\) is the correlation coefficient, \(\alpha\) represents variability and is the ratio of the standard deviation of forecasted and observed rainfall time series, and \(\beta\) represents bias and is the ratio of the mean values of forecasted and observed time series. KGE overcomes systematic underestimation of peaks and variability in the NSE and it varies between 1.0 (perfect fit) and \(- \infty\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tongal, H., Sivakumar, B. Complex network analysis and robustness evaluation of spatial variation of monthly rainfall. Stoch Environ Res Risk Assess 38, 423–445 (2024). https://doi.org/10.1007/s00477-023-02578-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-023-02578-y

Keywords

Navigation