Log in

Temporary immersion system for in vitro propagation via organogenesis of forest plant species

  • Review
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

This article summarizes the latest findings on the parameters affecting shoot efficacy in TIS and the effects of intermittent immersion on the morpho-physiological characteristics and ex vitro survival of forest plant species.

Abstract

Tissue culture techniques for forest plant species are essential to meet the growing demand in the global plant market and to ensure the environmental sustainability of production; therefore, it is necessary to resort to innovative tools that allow to increase the number of plants in a short time. Various propagation protocols using semi-solid media systems have been described. However, in these protocols, the use of gelling agents contributes significantly to higher costs and limits the possibility of automation in commercial propagation. The solution is to use liquid culture media, which reduces production costs and facilitates automation of the in vitro propagation process. This system not only solves some problems caused by the use of a static liquid culture medium, such as hyperhydricity, but also opens up the possibility of automating some stages of in vitro culture. However, effective control of hyperhydricity may be one reason why few forest species have been successfully propagated in temporary immersion systems. This review focuses on the use of these systems for in vitro propagation of forest plant species. The parameters affecting the efficacy of shoots in temporary immersion systems are discussed, as well as the effects of temporary immersion on the morpho-physiological characteristics and ex vitro survival of forest plant species, considering several scientific articles by researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afreen F (2008) Temporary immersion bioreactor. In Plant tissue culture engineering Springer, Dordrecht. pp 187–199. https://doi.org/10.1007/978-1-4020-3694-1_11

  • Afreen F, Zobayed SMA, Kozai T (2002) Photoautotrophic culture of Coffea arabusta somatic embryos: development of a bioreactor for large-scale plantlet conversion from cotyledonary embryos. Ann Bot 90(1):21–29. https://doi.org/10.1093/aob/mcf151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguilar M, Garita K, Kim Y, Kim J, Moon H (2019) Simple Protocol for the micropropagation of Teak (Tectona grandis Linn.) in Semi-Solid and Liquid Media in RITA® Bioreactors and ex Vitro Rooting. Am J Plant Sci 10(07):1121–1141. https://doi.org/10.4236/ajps.2019.107081

    Article  CAS  Google Scholar 

  • Akdemir H, Süzerer V, Onay A, Tilkat E, Ersali Y, Çiftçi Y (2014) Micropropagation of the pistachio and its rootstocks by temporary immersion system. Plant Cell Tissue Organ Cult 117(1):65–76. https://doi.org/10.1007/s11240-013-0421-0

    Article  CAS  Google Scholar 

  • Alister B, Finnie J, Watt M, Blakeway F (2005) Use of the temporary immersion bioreactor system (RITA®) for production of commercial Eucalyptus clones in Mondi Forests (SA). In Liquid culture systems for in vitro plant propagation (pp. 425–442). Springer, Dordrecht. https://doi.org/10.1007/1-4020-3200-5_33

  • Alvard D, Cote F, Teisson C (1993) Comparison of methods of liquid medium culture for banana micropropagation. Plant Cell Tissue Organ Cult 32(1):55–60. https://doi.org/10.1007/BF00040116

    Article  Google Scholar 

  • Alves V, Pinto R, Debiasi C, Santos M, Gonçalves J, Domingues J (2021) Micropropagation of Corema album from adult plants in semisolid medium and temporary immersion bioreactor. Plant Cell Tissue Organ Cult 145(3):641–648. https://doi.org/10.1007/s11240-021-02034-1

    Article  CAS  Google Scholar 

  • Antonio G, Rodríguez R, Cid M, Pina D, González-Olmedo J (2004) Efecto de un análogo de Brasinoesteroides (MH5) en la propagación de Eucalyptus grandis en Biorreactores de Inmersión Temporal. Cultivos Tropicales 25:39–44

    Google Scholar 

  • Aragón C, Carvalho L, González J, Escalona M, Amancio S (2009) Sugarcane (Saccharum sp. Hybrid) propagated in headspace renovating systems shows autotrophic characteristics and develops improved anti-oxidative response. Trop Plant Biol 2:38–50. https://doi.org/10.1007/s12042-008-9026-x

    Article  CAS  Google Scholar 

  • Aragón CE, Escalona M, Rodriguez R, Cañal MJ, Capote I, Pina D, González-Olmedo J (2010) Effect of sucrose, light, and carbon dioxide on plantain micropropagation in temporary immersion bioreactors. In Vitro Cell Dev Biol Plant 46:89–94. https://doi.org/10.1007/s11627-009-9246-2

    Article  CAS  Google Scholar 

  • Ayala PG, Brugnoli EA, Luna CV, González AM, Pezzutti R, Sansberro PA (2019) Eucalyptus nitens plant regeneration from seedling explants through direct adventitious shoot bud formation. Trees 33(6):1667–1678. https://doi.org/10.1007/s00468-019-01888-5

    Article  CAS  Google Scholar 

  • Ayub R, Pereira A, Dos Santos J, da Silva D, Pessenti I (2021) Sucrose concentration and blueberry plant density in temporary immersion systems (TIS. Rev Bras Frutic 43(4):1–9. https://doi.org/10.1590/0100-29452021166

    Article  Google Scholar 

  • Berthouly M, Etienne H (2005) Temporary immersion system: a new concept for use liquid medium in mass propagation. In: Hvoslef-Eide AK, Preil W (Eds) Liquid culture systems for in vitro plant propagation. Springer, Dordrecht, (pp 165–195). https://doi.org/10.1007/1-4020-3200-5_11

  • Bulbarela-Marini JE, Gómez-Merino FC, Galindo-Tovar ME, Solano-Rodríguez LA, Murguía-González J, Pastelín-Solano M, Núñez-Pastrana R, Castañeda-Castro O (2019) The in vitro propagation system of Citrus x latifolia (Yu. Tanaka) Yu.Tanaka (Rutacea) affects the growth and depletion of nutriments. In Vitro Cell Dev Biol Plant 55:209–2095. https://doi.org/10.1007/s11627-019-09976-4

    Article  Google Scholar 

  • Carvalho L, Ozudogru E, Lambardi M, Paiva L (2019) Temporary immersion system for micropropagation of tree species: a bibliographic and systematic review. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 47(2): 269–277. https://doi.org/10.15835/nbha47111305

  • Castro D, González J (2002) Micropropagación de eucalipto (Eucalyptus grandis Hill ex Maiden) en el sistema de inmersión temporal. Agricultura Técnica 62(1):68–78. https://doi.org/10.4067/S0365-28072002000100007

    Article  Google Scholar 

  • Cuenca B, Sánchez C, Aldrey A, Bogo B, Blanco B, Correa B, Vidal N (2017) Micropropagation of axillary shoots of hybrid chestnut (Castanea sativa × C. crenata) in liquid medium in a continuous immersion system. Plant Cell Tissue Organ Cult 131(2):307–320. https://doi.org/10.1007/s11240-017-1285-5ç

    Article  CAS  Google Scholar 

  • Cui HY, Murthy HN, Moh SH, Cui YY, Lee EJ, Paek KY (2014) Production of biomass and bioactive compounds in protocorm cultures of Dendrobium candidum Wall ex Lindl. using balloon type bubble bioreactors. Industrial Crops and Products 53 (2): 28–33; https://doi.org/10.1016/j.indcrop.2013.11.049

  • Di Sacco A, Hardwick K, Blakesley D, Brancalion P, Breman E, Cecilio Rebola L, Antonelli A (2021) Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Glob Change Biol 27(7):1328–1348. https://doi.org/10.1111/gcb.15498

    Article  CAS  Google Scholar 

  • Egertsdotter U (2019) Plant physiological and genetical aspects of the somatic embryogenesis process in conifers. Scand J for Res 34(5):360–369. https://doi.org/10.1080/02827581.2018.1441433

    Article  Google Scholar 

  • Escalona M (2006) Temporary immersion beats traditional techniques on all fronts. Prophyta Annual, pp 48–50

  • Escalona M, Samson G, Borroto C, Desjardins Y (2003) Physiology of the effects of temporary immersion bioreactors on micropropagated pineapple plantlets. In Vitro Cell Develop Biol Plant 39(6):651–656. https://doi.org/10.1079/IVP2003473

    Article  CAS  Google Scholar 

  • Etienne H, Berthouly M (2002) Temporary immersion systems in plant micropropagation. Plant Cell Tissue Organ Cult 69(3):215–231. https://doi.org/10.1023/A:10156688610465

    Article  Google Scholar 

  • Frometa O, Morgado M, Gradaille M (2016) Efecto del tiempo de cultivo y volumen de medio de cultivo por explante en la multiplicación de Gerbera jamesonii en sistemas de inmersión temporal. Biotecnología Vegetal 16(1):3–11

    Google Scholar 

  • Gago D, Vilavert S, Bernal M, Sánchez C, Aldrey A, Vidal N (2021) The Effect of Sucrose Supplementation on the Micropropagation of Salix viminalis L. Shoots in Semisolid Medium and Temporary Immersion Bioreactors. Forests 12(10):1408. https://doi.org/10.3390/f12101408

    Article  Google Scholar 

  • Gago D, Bernal M, Sánchez C, Aldrey A, Cuenca B, Christie C, Vidal N (2022) Effect of sucrose on growth and stress status of Castanea sativa × C crenata shoots cultured in liquid medium. Plants 11(7):965. https://doi.org/10.3390/plants11070965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao M, Jiang W, Wei S, Lin Z, Cai B, Yang L, Chen L (2015) High-efficiency propagation of Chinese water chestnut [Eleocharis dulcis (Burm. F.) Trin. ex Hensch] using a temporary immersion bioreactor system. Plant Cell Tissue Organ Cult 121(3):761–772. https://doi.org/10.1007/s11240-015-0732-4

    Article  CAS  Google Scholar 

  • Gao H, Li J, Ji H, An L, **a X (2018) Hyperhydricity-induced ultrastructural and physiological changes in blueberry (Vaccinium spp). Plant Cell Tissue Organ Cult 133(1):65–76. https://doi.org/10.1007/s11240-017-1361-x

    Article  CAS  Google Scholar 

  • García-Ramírez Y (2021) Obtención de plantas de Bambusa vulgaris Schrad. ex Wendl con calidad morfo-fisiológica en medio de cultivo líquido. Tesis Doctoral. Universidad Central´´ Marta Abreu´´ de Las Villas. pp 52–55

  • García-Ramírez Y, Gonzáles MG, Mendoza EQ, Seijo MF, Cárdenas ML, Moreno-Bermúdez L, Ribalta OH (2014) Effect of BA treatments on morphology and physiology of proliferated shoots of Bambusa vulgaris Schrad. Ex Wendl in temporary immersion. Am J Plant Sci 5(02):205–211. https://doi.org/10.4236/ajps.2014.52027

    Article  CAS  Google Scholar 

  • García-Ramírez Y, González-González M, García S, Freire-Seijo M, Pérez M, Trujillo Á, Barbon R (2016) Efecto de la densidad de inóculo sobre la morfología y fisiología de los brotes de Bambusa vulgaris Schrad. ex Wendl cultivados en Sistema de Inmersión Temporal. Biotecnología Vegetal. 16(4):231–237

    Google Scholar 

  • García-Ramírez Y, Barrera G, Freire-Seijo M, Barbón R, Concepción-Hernández M, Mendoza-Rodríguez M, Torres-García S (2019) Effect of sucrose on physiological and biochemical changes of proliferated shoots of Bambusa vulgaris Schrad. Ex Wendl in temporary immersion. Plant Cell Tissue Org Cult. 137(2):239–247. https://doi.org/10.1007/s11240-019-01564-z

    Article  CAS  Google Scholar 

  • Georgiev V, Schumann A, Pavlov A, Bley T (2014) Temporary immersion systems in plant biotechnology. Eng Life Sci 14(6):607–621. https://doi.org/10.1002/elsc.201300166

    Article  CAS  Google Scholar 

  • Godoy S, Tapia E, Seit P, Andrade D, Sánchez E, Andrade P, Prieto H (2017) Temporary immersion systems for the mass propagation of sweet cherry cultivars and cherry rootstocks: development of a micropropagation procedure and effect of culture conditions on plant quality. In Vitro Cell Develop Biol Plant. 53(5):494–504. https://doi.org/10.1007/s11627-017-9856-z

    Article  CAS  Google Scholar 

  • González E (2005) Mass propagation of tropical crops in temporary immersion systems. In Liquid culture systems for in vitro plant propagation (pp. 197–211). Springer, Dordrecht. https://doi.org/10.1007/1-4020-3200-5_12

  • González González M (2013) Multiplicación in vitro de brotes de Bambusa vulgaris Schrader ex Wendland en medio de cultivos líquidos (Tesis de maestría, Universidad Central “Marta Abreu” de Las Villas, Instituto de Biotecnología de las Plantas), pp 13–54

  • González R, Ríos D, Avilés F, Sánchez-Olate M (2011) Multiplicación in vitro de Eucalyptus globulus mediante sistema de inmersión temporal. Bosque (valdivia) 32(2):147–154. https://doi.org/10.4067/S0717-92002011000200005

    Article  Google Scholar 

  • Gutiérrez L, López-Franco R, Morales-Pinzón T (2016) Micropropagation of Guadua angustifolia Kunth (Poaceae) using a temporary immersion system RITA®. Afr J Biotech 15(28):1503–1510. https://doi.org/10.5897/AJB2016.15390

    Article  Google Scholar 

  • Hahn J, Paek Y (2005) Multiplication of Chrysanthemum shoots in bioreactors as affected by culture method and inoculation density of single node stems. Plant Cell Tissue Org Cult 81(3):301–306. https://doi.org/10.1007/s11240-004-6655-0

    Article  Google Scholar 

  • Holst Sanjuán A (2010) Efecto del sistema de inmersión temporal (RITA®) sobre el desarrollo de plántulas in vitro de Guadua angustifolia kunth (Poaceae: Bambusoideae) y su posterior aclimatización, pp 21–29

  • Jesionek A, Kokotkiewicz A, Wlodarska P, Zabiegala B, Bucinski A, Luczkiewicz M (2017) Bioreactor shoot cultures of Rhododendron tomentosum (Ledum palustre) for a large-scale production of bioactive volatile compounds. Plant Cell Tissue Org Cult 131(1):51–64. https://doi.org/10.1007/s11240-017-1261-0

    Article  CAS  Google Scholar 

  • Jiménez E, Pérez N, de Feria M, Barbón R, Capote A, Chávez M, Quiala E, Pérez J (1999) Improved production of potato microtubers using a temporary immersion system. Plant Cell Tissue Org Cult 59:19–23. https://doi.org/10.1023/A:1006312029055

    Article  Google Scholar 

  • Klimaszewska K, Hargreaves C, Lelu-Walter MA, Trontin JF (2016) Advances in conifer somatic embryogenesis since year 2000. In Vitro Embryogenesis in Higher Plants. https://doi.org/10.1007/978-1-4939-3061-6_7

    Article  Google Scholar 

  • Kozai T (2010) Photoautotrophic micropropagation-environmental control for promoting photosynthesis. Propag Ornament Plants 10(4):188–204

    Google Scholar 

  • Lai CC, Lin HM, Nalawade SM, Fang W, Tsay HS (2005) Hyperhydricity in shoot cultures of Scrophularia yoshimurae can be effectively reduced by ventilation of culture vessels. J Plant Physiol 162:355–361. https://doi.org/10.1016/j.jplph.2004.07.015

    Article  CAS  PubMed  Google Scholar 

  • Luna CV, Gonzalez AM, Mroginski LA, Sansberro PA (2017) Anatomical and histological features of Ilex paraguariensis leaves under different in vitro shoot culture systems. Plant Cell Tissue Org Cult 129(3):457–467. https://doi.org/10.1007/s11240-017-1191-x

    Article  Google Scholar 

  • McAlister B, Finnie J, Watt M, Blakeway F (2005) Use of the temporary immersion bioreactor system (RITA®) for the production of commercial Eucalyptus clones at Mondi Forests (SA). In:Hvoslef-Eide AK, Preil W (Eds) Liquid Culture Systems for in vitro Plant Propagation. Springer, Dordrecht, pp 425–442. https://doi.org/10.1007/1-4020-3200-5_33

  • Mendonça E, Stein V, de Carvalho H, Santos B, Beijo L, Paiva L (2016) The use of continuous, temporary immersion bioreactor system and semisolid culture medium for the production of Eucalyptus camaldulensis clones. Ciência Florestal 26(4):1211–1224

    Article  Google Scholar 

  • Merkle S y Nairn J (2005) Hardwood tree biotechnology. In Vitro Cell Dev Biol Plant 41:602–619. https://doi.org/10.1079/IVP2005687

  • Mirzabe AH, Hajiahmad A, Fadavi A, Rafiee S (2022) Temporary immersion systems (TISs): A comprehensive review. J Biotechnol 357:56–83. https://doi.org/10.1016/j.jbiotec.2022.08.003

    Article  CAS  PubMed  Google Scholar 

  • Mongkolsook Y, Tanasombut M, Sumkaew R, Likitthammanit P, Wongwean P (2005) Temporary immersion system (TIS) for Micropropagation of Dendrocalamus latiflorus in Commercial Production,” Kasetsart Agricultural and Agro-Industrial Product Improvement In- stitute, Kasetsart University, Bangkok. Tailandia, pp 33–40

  • Nicholson J, Shukla MR, Saxena PK (2020) In vitro rooting of hybrid hazelnuts (Corylus avellana× Corylus americana) in a temporary immersion system. Botany 98(7):343–352. https://doi.org/10.1139/cjb-2019-0206

    Article  CAS  Google Scholar 

  • Park SY, Klimaszewska K, Park JY, Mansfield SD (2010) Lodgepole pine: the first evidence of seed-based somatic embryogenesis and the expression of embryogenesis marker genes in shoot bud cultures of adult trees. Tree Physiol 30(11):1469–1478. https://doi.org/10.1093/treephys/tpq081

    Article  CAS  PubMed  Google Scholar 

  • Peña-Ramírez Y, Juárez-Gómez J, Gómez-López L, Jerónimo-Pérez J, García-Sheseña I, González-Rodríguez J, Robert M (2010) Multiple adventitious shoot formation in Spanish Red Cedar (Cedrela odorata L.) cultured in vitro using juvenile and mature tissues: an improved micropropagation protocol for a highly valuable tropical tree species. In Vitro Cell Developl Biol Plant. 46(2):149–160. https://doi.org/10.1007/s11627-010-9280-0

    Article  CAS  Google Scholar 

  • Perez J, Yero M, Arevich M, Pupo J, Werbrouck S (2020) In vitro multiplication of Morus alba L. Criolla variety in temporary immersion systems. Pastos y Forrajes 43(3):210–219

    Google Scholar 

  • Preil W (2005) General introduction: a personal reflection on the use of liquid media for in vitro culture. En: Hvoslef-Eide A, Preil W (Eds.) Liquid culture systems for in vitro plant propagation. Springer, Dordrecht, pp 1–8. https://doi.org/10.1007/1-4020-3200-5_1

  • Quiala E, Cañal M, Meijón M, Rodríguez R, Chávez M, Valledor L, Barbón R (2012) Morphological and physiological responses of proliferating shoots of teak to temporary immersion and BA treatments. Plant Cell Tissue Org Cult 109(2):223–234. https://doi.org/10.1007/s11240-011-0088-3

    Article  CAS  Google Scholar 

  • Ramírez-Mosqueda M, Iglesias-Andreu L (2016) Evaluation of different temporary immersion systems (BIT®, BIG, and RITA®) in the micropropagation of Vanilla planifolia Jacks. In Vitro Cell Develop Biol Plant 52(2):154–160. https://doi.org/10.1007/s11627-015-9735-4

    Article  Google Scholar 

  • Regueira M, Rial E, Blanco B, Bogo B, Aldrey A, Correa B, Vidal N (2018) Micropropagation of axillary shoots of Salix viminalis using a temporary immersion system. Trees 32(1):61–71. https://doi.org/10.1007/s00468-017-1611-x

    Article  CAS  Google Scholar 

  • Salas J, Agramonte D, Jiménez-Terry F, Pérez M, Collado R, Barbón R, Chávez M (2011) Propagación de plantas de Morus alba var. Criolla con el uso de sistemas de inmersión temporal. Biotecnología Vegetal. 11(2):77–88

    Google Scholar 

  • San José MC, Blázquez N, Cernadas MJ, Janeiro LV, Cuenca B, Sánchez C, Vidal N (2020) Temporary immersion systems to improve alder micropropagation. Plant Cell Tissue Org Cult 143(2):265–275. https://doi.org/10.1007/s11240-020-01937-9

    Article  CAS  Google Scholar 

  • Sandhu M, Wani S, Jiménez V (2018) In vitro propagation of bamboo species through axillary shoot proliferation: a review. Plant Cell Tissue Org Cult 132(1):27–53. https://doi.org/10.1007/s11240-017-1325-1

    Article  CAS  Google Scholar 

  • Schuchovski C, Sant’Anna-Santos B, Marra R, Biasi L (2020) Morphological and anatomical insights into de novo shoot organogenesis of in vitro ‘Delite’rabbiteye blueberries. Heliyon 6(11):e05468. https://doi.org/10.1016/j.heliyon.2020.e05468

    Article  PubMed  PubMed Central  Google Scholar 

  • Son SH, Choi SM, Kwon SR, Lee YH, Paek KY (1999) Large-scale culture of plant cell and tissue by bioreactor system. J Plant Biotechnol 1:1–8

    Google Scholar 

  • Souza D, Avelar M, Fernandes S, Silva E, Duarte V, Molinari L, Brondani G (2020) Spectral quality and temporary immersion bioreactor for in vitro multiplication of Eucalytpus grandis× Eucalyptus urophylla. 3 Biotech. 10(10):1–11. https://doi.org/10.1007/s13205-020-02447-3

    Article  Google Scholar 

  • Suwal M, Lamichhane J, Gauchan D (2020) Regeneration technique of bamboo species through nodal segments: a review. Nepal J Biotechnol 8(1):54–68. https://doi.org/10.3126/njb.v8i1.30209

    Article  Google Scholar 

  • Teisson C, Alvard D (1995) A new concept of plant in vitro cultivation liquid medium: temporary immersion. In: Terzi M. Celia R. Falavigna A. Kluwer, Dordrecht (Eds.). Current Issues in Plant Molecular and Cellular Biology, pp 105–110. https://doi.org/10.1007/978-94-011-0307-7_12

  • Troch V, Sapeta H, Werbrouck S, Geelen D, Van Labeke M (2010) In vitro culture of chestnut (Castanea sativa Mill.) using temporary immersion bioreactors. Acta Hort 885:383–389

    Article  Google Scholar 

  • Tsukaya H (2014) Comparative leaf development in angiosperms. Curr Opin Plant Biol 17:103–109. https://doi.org/10.1016/j.pbi.2013.11.012

    Article  PubMed  Google Scholar 

  • Varis S, Klimaszewska K, Aronen T (2018) Somatic embryogenesis and plant regeneration from primordial shoot explants of Picea abies (L.) H. Karst. somatic trees. Frontiers in plant Science. 9: 1551. https://doi.org/10.3389/fpls.2018.01551

  • Vasil I (1994) Automation in plant propagation. Plant Cell Tiss Org Cult 39(2):105–108. https://doi.org/10.1007/BF00033917

    Article  Google Scholar 

  • Vidal N, Sánchez C (2019) Use of bioreactor systems in the propagation of forest trees. Eng Life Sci 19(12):896–915. https://doi.org/10.1002/elsc.201900041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidal N, Blanco B, Cuenca B (2015) A temporary immersion system for micropropagation of axillary shoots of hybrid chestnut. Plant Cell Tissue Org Cult. 123(2):229–243. https://doi.org/10.1007/s11240-015-0827-y

    Article  CAS  Google Scholar 

  • Watt M (2012) The status of temporary immersion system (TIS) technology for plant micropropagation. Afr J Biotech 11(76):14025–14035. https://doi.org/10.5897/AJB12.1693

    Article  CAS  Google Scholar 

  • Welander M, Persson J, Asp H, Zhu L (2014) Evaluation of a new vessel system based on temporary immersion system for micropropagation. Sci Hortic 179:227–232. https://doi.org/10.1016/j.scienta.2014.09.035

    Article  CAS  Google Scholar 

  • **ao Y, Zhao J, Kozai T (2000) Practical sugar-free micropropagation system using large vessels with forced ventilation. In: Kubota C, Chun C. (eds) Transplant production in the 21st century. Kluwer Academic Publishers, Dordrecht, pp. 266–273. https://doi.org/10.1007/978-94-015-9371-7_43

  • **ao Y, Niu G, Kozai T (2011) Development and application of photoautotrophic micropropagation plant system. Plant Cell Tiss Organ Cult 105:149–158. https://doi.org/10.1007/s11240-010-9863-9

    Article  CAS  Google Scholar 

  • Zhang B, Song L, Bekele L, Shi J, Jia Q, Zhang B, Chen J (2018) Optimizing factors affecting development and propagation of Bletilla striata in a temporary immersion bioreactor system. Sci Hortic 232:121–126. https://doi.org/10.1016/j.scienta.2018.01.007

    Article  CAS  Google Scholar 

  • Ziv M (2005) Simple bioreactors for mass propagation of plants. In: Hvoslef-Eide AK, Preil W. Springer, Dordrecht (Eds.) Liquid Culture Systems for in vitro Plant Proagation, p 588. https://doi.org/10.1007/1-4020-3200-5_5

  • Zobayed S, Afreen F, Kubota C, Kozai T (2000) Water control and survival of Ipomoea batatas grown photoautotrophically under forced ventilation and photomixotrophically under natural ventilation. Ann Bot 86(3):603–610. https://doi.org/10.1006/anbo.2000.1225

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks the anonymous reviewer(s) and the editor of this article for their critical comments and suggestions on the manuscript.

Funding

Self-funded.

Author information

Authors and Affiliations

Authors

Contributions

YG-R is the sole author of the article.

Corresponding author

Correspondence to Yudith García-Ramírez.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Communicated by E. Corredoira.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Ramírez, Y. Temporary immersion system for in vitro propagation via organogenesis of forest plant species. Trees 37, 611–626 (2023). https://doi.org/10.1007/s00468-022-02379-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-022-02379-w

Keywords

Navigation