Log in

Potassium transporter HcKUP12 from Halostachys caspica improved transgenic Arabidopsis salt tolerance through maintaining potassium homeostasis

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

This study demonstrated that HcKUP12 plays a major role in K+ acquisition faced with externally low K+ and high Na+ and that HcKUP12 could be regarded as a candidate gene for a high-affinity K+ uptake system.

Abstract

Potassium (K+) is an essential macronutrient for plant growth, development and resistance to osmotic stress. KT/HAK/KUP is the largest potassium transporter family, the members of which play crucial roles in K+ homeostasis and cell growth in various plant species. Desert halophytes need many strategies to survive in harsh environments, among which efficient absorption of K+ is an important mechanism. Here, we identified and studied HcKUP12 of the KT/HAK/KUP family from Halostachys caspica which is an important perennial halophyte of woody plants. Expression analysis showed that HcKUP12 has higher expression in assimilation branches (functioning as leaves due to leaf degeneration) than roots, and HcKUP12 was induced by salt, abscisic acid (ABA) and methyl viologen (MV) stress. Subcellular localization analysis indicated that HcKUP12 was targeted to the plasma membrane (PM). HcKUP12 gene function was evaluated using K+ uptake deficient yeast R5421 and Arabidopsis thaliana was evaluated. Transformation with HcKUP12 rescued the growth defect of mutant yeast strain R5421 at the low K+ concentration range between 0 and 50 mM. Overexpression of HcKUP12 in A. thaliana showed increased lateral roots at 100 µM (− K+) supply condition and root length at 125 mM NaCl stress, respectively. Additionally, shoot growth, potassium content and K+/Na+ concentration ratio in the seedlings of OE lines were all enhanced resulting in tolerance to low potassium and salt stress. Taken together, these results demonstrate that HcKUP12 plays a major role in K+ acquisition when faced with externally low K+ and high Na+ in HcKUP12 OE plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data archiving statement

Halostachys caspica KUP12 protein sequence was submitted to GenBank (GenBank accession: AII25440.1) in The National Center for Biotechnology Information (NCBI). Halostachys caspica KUP12 cDNA sequence (GenBank accession: KF699858.1) was cloned and sequenced from the Halostachys caspica cultivar.

References

  • Alemán F, Caballero F, Ródenas R, Rivero RM, Martínez V, Rubio F (2014) The F130S point mutation in the Arabidopsis high-affinity K+ transporter AtHAK5 increases K+ over Na+ and Cs+ selectivity and confers Na+ and Cs+ tolerance to yeast under heterologous expression. Front Plant Sci 5:430

    Article  Google Scholar 

  • Amrutha RN, Sekhar PN, Varshney RK, Kishor PBK (2007) Genome-wide analysis and identification of genes related to potassium transporter families in rice (Oryza sativa L.). Plant Sci 172(4):708–721

    Article  CAS  Google Scholar 

  • Brosché M, Vinocur B, Alatalo ER, Lamminmäki A, Teichmann T, Ottow EA, Djilianov D, Afif D, Bogeat-Triboulot MB, Altman A, Polle A, Dreyer E, Rudd S, Paulin L, Auvinen P, Kangasjärvi J (2005) Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert. Genome Biol 6(12):R101

    Article  Google Scholar 

  • Chen G, Hu Q, Luo L, Yang T, Zhang S, Hu Y, Yu L, Xu G (2015a) Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges. Plant Cell Environ 38(12):2747–2765

    Article  CAS  Google Scholar 

  • Chen XL, Morewane MB, Xue XZ, Guo WZ, Wang LC (2015b) Analysis of inorganic elements in hydroponic Taraxacum mongolicum grown under different spectrum combinations by ICP-AES. Spectrosc Spectr Anal 35(2):519

    CAS  Google Scholar 

  • Clough SJ, Bent AF (1999) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  Google Scholar 

  • Cuin TA, Shabala S (2008) Compatible solutes mitigate damaging effects of salt stress by reducing the impact of stress-induced reactive oxygen species. Plant Signal Behav 3(3):207–208

    Article  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19(6):371–379

    Article  CAS  Google Scholar 

  • Epstein E, Rains D, Elzam O (1963) Resolution of dual mechanisms of potassium absorption by barley roots. Proc Natl Acad Sci USA 49(5):684

    Article  CAS  Google Scholar 

  • Fulgenzi FR, Peralta ML, Mangano S, Danna CH, Vallejo AJ, Puigdomenech P, Santa-María GE (2008) The ionic environment controls the contribution of the barley HvHAK1 transporter to potassium acquisition. Plant Physiol 147(1):252–262

    Article  CAS  Google Scholar 

  • Garciadeblas B, Benito B, Rodríguez-Navarro A (2002) Molecular cloning and functional expression in bacteria of the potassium transporters CnHAK1 and CnHAK2 of the seagrass Cymodocea nodosa. Plant Mol Biol 50:623–633

    Article  CAS  Google Scholar 

  • Gierth M, Mäser P (2007) Potassium transporters in plants–involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett 581(12):2348–2356

    Article  CAS  Google Scholar 

  • Grabov A (2007) Plant KT/KUP/HAK potassium transporters: single family multiple functions. Ann Bot 99(6):1035–1041

    Article  CAS  Google Scholar 

  • Guan B, Hu Y, Zeng Y, Wang Y, Zhang F (2011) Molecular characterization and functional analysis of a vacuolar Na+/H+ antiporter gene (HcNHX1) from Halostachys caspica. Mol Biol Rep 38:1889–1899

    Article  CAS  Google Scholar 

  • Gupta M, Qiu X, Wang L, **e W, Zhang C, **ong L, Lian X, Zhang Q (2008) KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa). Mol Genet Genom 280(5):437–452

    Article  CAS  Google Scholar 

  • Han M, Wu W, Wu WH, Wang Y (2016) Potassium Transporter KUP7 Is Involved in K+ Acquisition and Translocation in Arabidopsis Root under K+-Limited Conditions. Mol Plant 9:437–446

    Article  CAS  Google Scholar 

  • Horie T, Sugawara M, Okada T, Taira T, Kaothien-Nakayama P, Katsuhara M, Shinmyo A, Nakayama H (2011) Rice sodium-insensitive potassium transporter, OsHAK5, confers increased salt tolerance in tobacco BY2 cells. J Biosci Bioeng 111(3):346–356

    Article  CAS  Google Scholar 

  • Kim EJ, Kwak JM, Uozumi N, Schroeder JI (1998) AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell 10:51–62

    Article  CAS  Google Scholar 

  • Liang H, Ko CH, Herman T, Gaber RF (1998) Trinucleotide insertions, deletions, and point mutations in glucose transporters confer K+ uptake in Saccharomyces cerevisiae. Mol Cell Biol 18(2):926–935

    Article  CAS  Google Scholar 

  • Maathuis FJ (2005) The role of monovalent cation transporters in plant responses to salinity. J Exp Bot 57(5):1137–1147

    Article  Google Scholar 

  • Maathuis FJ (2009) Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12:250–258

    Article  CAS  Google Scholar 

  • Maathuis FJ, Sanders D (1997) Regulation of K+ absorption in plant root cells by external K+: interplay of different plasma membrane K+ transporters. J Exp Bot 48:451–458

    Article  CAS  Google Scholar 

  • Nieves-Cordones M, Fernando A, Martínes V, Rubio F (2010) The Arabidopsis thaliana HAK5 K+ transporter is required for plant growth and K+ acquisition from Low K+ solutions under saline conditions. Mol Plant 3(2):326–333

    Article  CAS  Google Scholar 

  • Nieves-Cordones M, Ródenas R, Chavanieu A, Rivero RM, Martinez V, Gaillard I, Rubio F (2016) Uneven HAK/KUP/KT protein diversity among angiosperms: species distribution and perspectives. Front Plant Sci 7:127

    PubMed  PubMed Central  Google Scholar 

  • Obata T, Kitamoto HK, Nakamura A, Fukuda A, Tanaka Y (2007) Rice shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells. Plant Physiol 144(4):1978–1985

    Article  CAS  Google Scholar 

  • Ou W, Mao X, Huang C, Tie W, Yan Y, Ding Z, Wu C, **a Z, Wang W, Zhou S, Li K, Wei Hu (2018) Genome-wide identification and expression analysis of the KUP Family under abiotic stress in cassava (Manihot esculenta Crantz). Front Physiol 9:17

    Article  Google Scholar 

  • Quintero FJ, Blatt MR (1997) A new family of KC transporters from Arabidopsis that are conserved across phyla. FEBS Lett 415(2):206–211

    Article  CAS  Google Scholar 

  • Rubio F, Nieves-Cordones M, Fernando A, Martínez V (2009) Relative contribution of AtHAK5 and AtAKT1 to K+ uptake in the high-affinity range of concentrations. Physiol Plant 134(4):598–608

    Article  Google Scholar 

  • Schachtman D, Liu W (1999) Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants. Trends Plant Sci 4(7):281–287

    Article  CAS  Google Scholar 

  • Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133(4):651–669

    Article  CAS  Google Scholar 

  • Shen Y, Shen L, Shen Z, **g W, Ge H, Zhao J, Zhang W (2015) The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Plant Cell Environ 38:2766–2779

    Article  CAS  Google Scholar 

  • Véry AA, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol 54(1):575–603

    Article  Google Scholar 

  • Wahyuning AS, **e L, Ryuichi T, Liu S, Tetsuo T (2009) Cloning of a high-affinity K+ transporter gene PutHKT2;1 from Puccinellia tenuiflora and its functional comparison with OsHKT2;1 from rice in yeast and Arabidopsis. J Exp Bot 60(12):3491–3502

    Article  Google Scholar 

  • Wang K, Lu W, Chen J, **e S, Shi H, Hsu H, Yu W, Xu K, Bian C, Fischer WB, Schwarz W, Feng L, Sun B (2012) PEDV ORF3 encodes an ion channel protein and regulates virus production. FEBS Lett 586(4):384–391

    Article  CAS  Google Scholar 

  • Wei J (2012) Genome-wide analysis and identification of HAK potassium transporter gene family in maize (Zea mays L.). Mol Biol Rep 39(8):8465–8473

    Article  Google Scholar 

  • Yang Z, Gao Q, Sun C, Li W, Gu S, Xu C (2009) Molecular evolution and functional divergence of HAK potassium transporter gene family in rice (Oryza sativa L.). J Genet Genom 36(3):161–172

    Article  CAS  Google Scholar 

  • Yang T, Zhang S, Hu Y, Wu F, Hu Q, Chen G, Cai J, Wu T, Moran N, Yu L (2014) The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiol 166(2):945–959

    Article  Google Scholar 

  • Zhang S, Zeng Y, Yi X, Zhang F (2016) Selection of suitable reference genes for quantitative RT-PCR normalization in the halophyte Halostachys caspica under salt and drought stress. Sci Rep 6:30363

    Article  CAS  Google Scholar 

  • Zhao KF, Fan H, Song J, Sun MX, Ungar I (2005) Two Na+ and Cl- hyperaccumulators of the chenopodiaceae. J Integr Plant Biol 47(3):311–318

    Article  CAS  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6(5):441–445

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant No. 31860061], Opening of Key Laboratory of Autonomous Region [Grant No. 2017D04026], The National Young Natural Science Foundation of China [Grant No. 31400729].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zhang, H., You, X. et al. Potassium transporter HcKUP12 from Halostachys caspica improved transgenic Arabidopsis salt tolerance through maintaining potassium homeostasis. Trees 36, 737–747 (2022). https://doi.org/10.1007/s00468-021-02246-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-021-02246-0

Keywords

Navigation