Log in

Transcript profiling leads to biomarker identification for agarwood resin-loaded Aquilaria malaccensis

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

The expression of terpenoid and defense response genes elevated during agarwood formation. TDFs obtained from these genes can serve as biomarkers to distinguish resin-loaded Aquilaria plant from healthy plants.

Abstract

Agarwood develops in a fraction of the wild Aquilaria population as a result of natural infections and wounding in the live vascular tissues of the Aquilaria malaccensis tree. Only an expert agarwood farmer or trader can identify resin-loaded trees by detecting the hole in the trunk, but this approach is less reliable and non-scientific. This must be replaced with a scientific approach to remove ambiguity and establish a standard protocol to assess the quality and hence the economic value of the specific Aquilaria tree. Each year, a significant number of trees are harvested due to high market demand and indiscriminate felling of Aquilaria tree. This study involves a cDNA-AFLP approach for transcript profiling using 64 selective primer combinations. This produced 2760 transcript-derived fragments (TDFs), of which 50 differentially expressed TDFs (DE-TDFs) were sequenced and identified. Amongst these seven were linked to terpenoid biosynthesis, one found in each LOX, abscisic acid, jasmonic acid, and defense response pathway. TDF-1–3, 5, and 6 were identified as sesquiterpene synthase, TDF-4 as a branch point enzyme, TDF-48 as a MAP kinase, TDF-47, and TDF-49 as transcription factors (TFs). To validate the cDNA-AFLP results qRT-PCR and semi-quantitative PCR was performed for 11 DE-TDFs. These DE-TDFs were expressed only in infected plants and thus can be used as a biomarker to identify and delineate economically valuable resin-containing plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Code availability

Not applicable.

References

  • Azren PD, Lee SY, Emang D, Mohamed R (2018) History and perspectives of induction technology for agarwood production from cultivated Aquilaria in Asia: a review. J for Res 30:1–11

    Article  Google Scholar 

  • Bachem CW, van der Hoeven RS, de Bruijn SM, Vreugdenhil D, Zabeau M, Visser RG (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J 9(5):745–753

    Article  CAS  PubMed  Google Scholar 

  • Barden A, Noorainie AA, Mulliken T et al (2000) Heart of the matter: agarwood use and trade and CITES implementation for Aquilaria malaccensis. Cambridge, UK: TRAFFIC International, Viii, 51 p. https://portals.iucn.org/library/node/8133

  • Bassam BJ, Gresshoff PM (2007) Silver staining DNA in polyacrylamide gels. Nat Protoc 2:2651

    Article  Google Scholar 

  • Blears MJ, De GrnadisLeeTrevors SAHJT (1998) Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. J Ind Microbiol Biotechnol 21:99–114

    Article  CAS  Google Scholar 

  • Borah RK, Ahmed FS, Sarmah GS et al (2012) A new record of leaf spot disease on Aquilaria malaccensis Lamk in India. Asian J Plant Pathol 6:48–51

    Article  Google Scholar 

  • Chen C, Kuo TC, Yang M et al (2014) Identification of cucurbitacins and assembly of a draft genome for Aquilaria agallocha. BMC Genom 15:578

    Article  Google Scholar 

  • Chhipa H, Kaushik N (2017) Fungal and bacterial diversity isolated from Aquilaria malaccensis tree and soil, induces agarospirol formation within 3 months after artificial infection. Front Microbiol 8:1286

    Article  PubMed  PubMed Central  Google Scholar 

  • CITES (2005) The trade and use of agarwood in Taiwan, Province of China. http://www.cites.org/common/com/pc/15/x-pc15–07-inf.pdf. Accessed 21 May 2005

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381

    Article  CAS  PubMed  Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan BBW, Gruissen RLJ (eds) Biochemistry and molecular biology of plants, American society of plant physiologists. Rockville, pp 1251–1267

  • Cui J, Wang C, Guo S, Yang L, **ao P, Wang M (2013) Evaluation of fungus-induced agilawood from Aquilaria sinensis in China. Symbiosis 60:37–44

    Article  CAS  Google Scholar 

  • Deguerry F, Pastore L, Wu S, Clark A, Chappell J, Schalk M (2006) The diverse sesquiterpene profile of patchouli, Pogostemon cablin, is correlated with a limited number of sesquiterpene synthases. Arch Biochem Biophys 454:123–136

    Article  CAS  PubMed  Google Scholar 

  • Ding X, Mei W, Lin Q, Wang H, Wang J, Peng S, Li H, Zhu J, Li W, Wang P, Chen H, Dong W, Guo D, Cai C, Huang S, Cui P, Dai H (2020) Genome sequence of the agarwood tree Aquilaria sinensis (Lour.) Spreng: the first chromosome-level draft genome in the Thymelaeceae family. GigaScience 9:3

    Article  Google Scholar 

  • Garcia AAF, Benchimol LL, Barbosa AMM et al (2004) Comparison of RAPD, RFLP, AFLP and SSR markers for diversity studies in tropical maize inbred lines. Genet Mol Biol 27(4):579–588

    Article  CAS  Google Scholar 

  • Goossens A, Hakkinen ST, Laakso I et al (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Natl Acad Sci USA 100:8595–8600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guterman I, Shalit M, Menda N, Piestun D, Dafny M et al (2002) Rose scent: genomics approach to discovering novel floral fragrance-related genes. Plant Cell 14:2325–2338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto K, Nakahara S, Inoue T, Sumida Y, Takahashi M, Masada Y (1985) A new chromone from agarwood and pyrolysis products of chromone derivatives. Chem Pharm Bull 33:5088–5091

    Article  CAS  Google Scholar 

  • He ML, Qi SY, Hu LJ (2005) Rapid in vitro propagation of medicinally important Aquilaria agallocha. J Zhejiang Univ Sci B 6(8):849–852

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong GJ, Xue XY, Mao YB, Wang LJ, Chen XY (2012) Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell 24(6):2635–2648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iseli C, Jongeneel CV, Bucher P (1999) ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol 99:138–148

  • Ishihara M, Tsuneya T, Uneyama K (1993) Fragrant sesquiterpenes from agarwood. Phytochemistry 33:1147–1155

    Article  CAS  Google Scholar 

  • Islam MR, Banu S (2019) An improved cost-effective method of RNA extraction from Aquilaria malaccensis. ASAG 3(2):30–38

    Google Scholar 

  • Islam MR, Bhau BS, Banu S (2020) Gene expression analysis associated with agarwood formation in Aquilaria malaccensis. Plant Physiol Rep 25:304–314

    Article  CAS  Google Scholar 

  • ** J, Zhang H, Kong L, Gao G, Luo J (2014) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42(D1):D1182–D1187

    Article  CAS  PubMed  Google Scholar 

  • ** J, He K, Tang X et al (2015) An Arabidopsis transcriptional regulatory map reveals distinct functional and evolutionary features of novel transcription factors. Mol Biol Evol 32(7):1767–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ** J, Tian F, Yang DC et al (2017) PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res 45(D1):D1040–D1045

    Article  CAS  PubMed  Google Scholar 

  • Kumeta Y, Ito M (2010) Characterization of δ-guaiene synthases from cultured cells of Aquilaria, responsible for the formation of the sesquiterpenes in agarwood. Plant Physiol 154:1998–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SY, Mohamed R (2016) The origin and domestication of Aquilaria, an important agarwood-producing genus. In: Mohamed R (ed) Agarwood: science behind the fragrance. Springer, Berlin, pp 1–20

    Google Scholar 

  • Lee SY, Ng WL, Mahat MN, Nazre M, Mohamed R (2016) DNA barcoding of the endangered Aquilaria (Thymelaeaceae) and its application in species authentication of agarwood products traded in the market. PLoS ONE 11(4):e0154631

    Article  PubMed  PubMed Central  Google Scholar 

  • Little DB, Croteau RB (2002) Alteration of product formation by directed mutagenesis and truncation of the multiple-product sesquiterpene synthases delta-selinene synthase and gamma-humulene synthase. Arch Biochem Biophys 402(1):120–135

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Chen H, Yang Y, Zhang Z, Wei J, Meng H, Chen W, Feng J, Gan B, Chen X, Gao Z, Huang J, Chen B, Chen H (2013) Whole-tree agarwood-inducing technique: an efficient novel technique for producing high-quality agarwood in cultivated Aquilaria sinensis trees. Molecules 18(3):3086–3106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamed R, Jong PL, Kamziah AK (2014) Fungal inoculation induces agarwood in young Aquilaria malaccensis trees in the nursery. J for Res 25(1):201–204

    Article  CAS  Google Scholar 

  • Nakanishi T, Yamagata E, Yoneda K, Miura I (1981) **kohol, a prezizane sesquiterpene alcohol from agarwood. Phytochemistry 20:1597–1599

    Article  CAS  Google Scholar 

  • Naziz PS, Das R, Sen S (2019) The scent of stress: evidence from the unique fragrance of agarwood. Front Plant Sci 10:840

    Article  PubMed  PubMed Central  Google Scholar 

  • Paun O, Schönswetter P (2012) Amplified fragment length polymorphism (AFLP)—an invaluable fingerprinting technique for genomic, transcriptomic, and epigenetic studies. Methods Mol Biol 862:75–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persoon GA (2007) Agarwood: the life of a wounded tree. IIAS Newslett 45:24–25

    Google Scholar 

  • Porta H, Rocha-Sosa M (2002) Plant lipoxygenases. Physiol Mol Features Plant Physiol 130(1):15–21

    CAS  Google Scholar 

  • Shankar U (2012) Effect of seed abortion and seed storage on germination and seedling growth in Aquilaria malaccensis Lamk. (Thymelaeaceae). Curr Sci 102:4

    Google Scholar 

  • Siah CH, Namasivayam P, Mohamed R (2016) Transcriptome reveals senescing callus tissue of Aquilaria malaccensis, an endangered tropical tree, triggers similar response as wounding with respect to terpenoid biosynthesis. Tree Genet Genomes 12:33

    Article  Google Scholar 

  • Soehartono T, Newton AC (2000) Conservation and sustainable use of tropical trees in the genus Aquilaria. I. Status and distribution in Indonesia. Biol Conserv 96:83–94

    Article  Google Scholar 

  • Steele CL, Crock J, Bohlmann J, Croteau R (1998) Sesquiterpene synthases from grand fir (Abies grandis). Comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of δ-selinene synthase and γ-humulene synthase. J Biol Chem 273:2078–2089

    Article  CAS  PubMed  Google Scholar 

  • Szklarczyk D, Morris JH, Cook H et al (2017) The STRING database in 2017: quality-controlled proteinprotein association networks, made broadly accessible. Nucleic Acids Res 45:D362–D368

    Article  CAS  PubMed  Google Scholar 

  • Tan CS, Isa NM, Ismail I, Zainal Z (2019) Agarwood induction: current developments and future perspectives. Front Plant Sci 10:122

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian F, Yang DC, Meng YQ, ** J, Gao G (2020) PlantRegMap: charting functional regulatory maps in plants. Nucleic Acids Res 48(D1):D1104–D1113

    CAS  PubMed  Google Scholar 

  • Van Thanh L, Van Do T, Son NH et al (2015) Impacts of biological, chemical and mechanical treatments on sesquiterpene content in stems of planted Aquilaria crassna trees. Agrofor Syst 89:973–981

    Article  Google Scholar 

  • Varma KR, Maheshwari ML, Bhattacharyya SC (1963) The constitution of agarospirol, a sesquiterpenoid with a new skeleton. Tetrahedron 21:1079–1090

    Google Scholar 

  • Vuylsteke M, Peleman J, van Eijk M (2007) AFLP-based transcript profiling (cDNA-AFLP) for genome-wide expression analysis. Nat Protoc 2:1399–1413

    Article  CAS  PubMed  Google Scholar 

  • Weber H, Chételat A, Caldelari D, Farmer EE (1999) Divinyl ether fatty acid synthesis in late blight-diseased potato leaves. Plant Cell 11:485–493

    CAS  PubMed  PubMed Central  Google Scholar 

  • World Conservation Monitoring World Centre (2013) Aquilaria microcarpa. In: IUCN 2013. IUCN red list of threatened species. Version 2013.2. http://www.iucnredlist.org/details/33698/0. Accessed 15 Jan 2014

  • **ao D, Liu S, Wei Y et al (2016) cDNA-AFLP analysis reveals differential gene expression in incompatible interaction between infected non-heading Chinese cabbage and Hyaloperonospora parasitica. Hortic Res 3:16034

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Zhang Z, Wang M, Wei J, Chen H, Gao Z, Sui C, Luo H, Zhang X, Yang Y, Meng H, Li W (2013) Identification of genes related to agarwood formation: transcriptome analysis of healthy and wounded tissues of Aquilaria sinensis. BMC Genom 14:227

    Article  CAS  Google Scholar 

  • Xu YH, Liao YC, Zhang Z et al (2016) Jasmonic acid is a crucial signal transducer in heat shock induced sesquiterpene formation in Aquilaria sinensis. Sci Rep 6:21843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yagura T, Ito M, Kiuchi F, Honda G, Shimada Y (2003) Four new 2-(2-phenylethyl) chromone derivatives from withered wood of Aquilaria sinensis. Chem Pharm Bull 51:560–564

    Article  CAS  Google Scholar 

  • Ye W, Wu H, He X, Wang L, Zhang W, Li H, Fan Y, Tan G, Liu T, Gao X (2016) Transcriptome sequencing of chemically induced Aquilaria sinensis to identify genes related to agarwood formation. PLoS ONE 11:e0155505

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Brockelman WY, Allen MA (2008) Matrix analysis to evaluate sustainability: the tropical tree Aquilaria crassna, a heavily poached source of agarwood. Biol Conse 141:1676–1686

    Article  Google Scholar 

  • Ziegler J, Diaz-Chávez ML, Kramell R, Ammer C, Kutchan TM (2005) Comparative macroarray analysis of morphine containing Papaver somniferum and eight morphine free Papaver species identifies an O-methyltransferase involved in benzylisoquinoline biosynthesis. Planta 222(3):458–471

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Mojibur Rahman Khan, IASST, Guwahati for providing access to the laboratory facilities and Dr. Mohammad Ghaznavi Idris, Assistant Professor, Department of Bioengineering and Technology, GUIST, Gauhati University, Guwahati for hel** in qualitative improvement of the manuscript along with the two anonymous reviewers for their valuable inputs. Authors would like to thank all the homestead growers of Aquilaria who provided assess to their plantations for sampling.

Funding

Authors acknowledge the Department of Biotechnology (DBT), Ministry of Science and Technology, Goverment of India, for the Research Grant (Grant no-BT/PR6346/GBD/27/405/2012). MRI acknowledges the Ministry of Minority Affairs, Goverment of India, for the Maulana Azad National Fellowship for Minority Students Grant, under Grant no—F1-17.1/201718-MANF-2017-18-ASS-78710/(SA-III/website).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofia Banu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The authors' consent to submit the manuscript to the journal Trees.

Data archiving statement

The differentially expressed TDF sequences were submitted to the NCBI GenBank database with accession number MK751302–MK751351. The full list of accession numbers and details of the sequences are included in supplementary Table 1.

Additional information

Communicated by Carlson.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

468_2021_2180_MOESM1_ESM.tif

Supplementary Fig.1 Representative image of molecular cloning. A). Blue-white screening of the recombinant clones. B). Colony PCR of the selective recombinant clones, C1-C7 are selective positive clones containing the TDF of interest. C). Recombinant plasmids (~ 3.5 kb) containing TDF of interest were isolated from C1 and C3 clones. D). PCR product of C1 and C3 plasmids amplified with TDF-5 (SS4) primers. M is a 100 bp molecular size marker in images B and D and a 1 kb molecular size marker in image C (TIF 9576 kb)

468_2021_2180_MOESM2_ESM.tif

Supplementary Fig.2 Fold change (gene expression level) values of the 11 identified DE-TDFs in five different geographical locations (TIF 191 kb)

468_2021_2180_MOESM3_ESM.tif

Supplementary Fig.3 Representative image of validation of 11 biomarkers a). DSS, DGS, MK, DXPS, DGS1, and SS4. b). FPS, LOX, MAPK3, MYC2, WRKY1, and GAPDH using semi-quantitative PCR analysis. The housekee** gene GAPDH is used as an internal control for this experiment. Sample coding: Nt1, Nt2, Nt3, Nt4, Nt5, Nt6, and Nt7 are infected plants of Namti and Ntn1, Ntn2, Ntn3, Ntn4, Ntn5, Ntn6, and Ntn7 are non-infected plants of Namti (TIF 8820 kb)

Supplementary file4 (TIF 7962 kb)

468_2021_2180_MOESM5_ESM.tif

Supplementary Fig.4 Artificial induction and natural infection of A. malaccensis A). Site of mechanical wounding with an electrical drilling machine B). Sealing the drilled hole with a bamboo stick C). Naturally infected A. malaccensis tree (TIF 3428 kb)

468_2021_2180_MOESM6_ESM.docx

Supplementary Table 1: List of identified DE-TDFs with their Genbank accession numbers and functional annotations (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.R., Banu, S. Transcript profiling leads to biomarker identification for agarwood resin-loaded Aquilaria malaccensis. Trees 35, 2119–2132 (2021). https://doi.org/10.1007/s00468-021-02180-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-021-02180-1

Keywords

Navigation