Log in

Factors associated with cardiovascular target organ damage in children after renal transplantation

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Cardiovascular disease is the second-most common cause of death in pediatric renal transplant recipients. The aim of this study was to evaluate subclinical cardiovascular target organ damage defined as the presence of arterio- and atherosclerotic lesions and cardiac remodeling and to analyze contributing risk factors in a large cohort of children after renal transplantation (RT).

Methods

A total of 109 children aged 13.1 ± 3.3 years who had undergone RT at one of three German transplant centers were enrolled in this study. Patients had been transplanted a mean of 5.5 (±4.0) years prior to being enrolled in the study. Anthropometric data, laboratory values and office- and 24-h ambulatory blood pressure monitoring (ABPM) were evaluated. Cardiovascular target organ damage was determined through non-invasive measurements of aortic pulse wave velocity (PWV), carotid intima–media thickness (IMT) and left ventricular mass (LVM).

Results

Elevated PWV or IMT values were detected in 22 and 58% of patients, respectively. Left ventricular hypertrophy was found in as many as 43% of patients. The prevalence of uncontrolled or untreated hypertension was 41%, of which 16% of cases were only detected by ABPM measurements. In the multivariable analysis, higher diastolic blood pressure, everolimus intake and lower estimated glomerular filtration rate were independently associated with high PWV. Higher systolic blood pressure and body mass index were associated with elevated LVM.

Conclusions

Our results showed an alarming burden of cardiovascular subclinical organ damage in children after RT. Hypertension, obesity, immunosuppressive regimen and renal function emerged as independent risk factors of organ damage. Whereas the latter is not modifiable, the results of our study strongly indicate that the management of children after RT should focus on the control of blood pressure and weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. McDonald SP, Craig JC (2004) Long-term survival of children with end-stage renal disease. N Engl J Med 350:2654–2662

    Article  CAS  PubMed  Google Scholar 

  2. Samuel SM, Tonelli MA, Foster BJ, Alexander RT, Nettel-Aguirre A, Soo A, Hemmelgarn BR (2011) Survival in pediatric dialysis and transplant patients. Clin J Am Soc Nephrol 6:1094–1099

    Article  PubMed  PubMed Central  Google Scholar 

  3. Foster BJ, Dahhou M, Zhang X, Platt RW, Hanley JA (2011) Change in mortality risk over time in young kidney transplant recipients. Am J Transplant 11:2432–2442

    Article  CAS  PubMed  Google Scholar 

  4. Smith JM, Stablein DM, Munoz R, Hebert D, McDonald RA (2007) Contributions of the transplant registry: the 2006 annual report of the north American pediatric renal trials and collaborative studies (NAPRTCS). Pediatr Transplant 11:366–373

    Article  PubMed  Google Scholar 

  5. Pruthi R, Maxwell H, Casula A, Braddon F, Lewis M, O'Brien C, Stojanovic J, Tse Y, Inward C, Sinha MD (2013) UK renal registry 16th annual report: chapter 13 clinical, haematological and biochemical parameters in patients receiving renal replacement therapy in paediatric centres in the uk in 2012: national and centre-specific analyses. Nephron Clin Pract 125:259–273

    Article  CAS  PubMed  Google Scholar 

  6. Chavers BM, Molony JT, Solid CA, Rheault MN, Collins AJ (2015) One-year mortality rates in US children with end-stage renal disease. Am J Nephrol 41:121–128

    Article  PubMed  PubMed Central  Google Scholar 

  7. Laskin BL, Mitsnefes MM, Dahhou M, Zhang X, Foster BJ (2015) The mortality risk with graft function has decreased among children receiving a first kidney transplant in the United States. Kidney Int 87:575–583

    Article  PubMed  Google Scholar 

  8. Groothoff JW, Gruppen MP, Offringa M, Hutten J, Lilien MR, Van De Kar NJ, Wolff ED, Davin JC, Heymans HS (2002) Mortality and causes of death of end-stage renal disease in children: a Dutch cohort study. Kidney Int 61:621–629

    Article  PubMed  Google Scholar 

  9. Briet M, Boutouyrie P, Laurent S, London GM (2012) Arterial stiffness and pulse pressure in CKD and ESRD. Kidney Int 82:388–400

    Article  PubMed  Google Scholar 

  10. Verbeke F, Marechal C, Van LS, Van BW, Devuyst O, Van Bortel LM, Jadoul M, Vanholder R (2011) Aortic stiffness and central wave reflections predict outcome in renal transplant recipients. Hypertension 58:833–838

    Article  CAS  PubMed  Google Scholar 

  11. Zoungas S, Cameron JD, Kerr PG, Wolfe R, Muske C, McNeil JJ, McGrath BP (2007) Association of carotid intima-medial thickness and indices of arterial stiffness with cardiovascular disease outcomes in CKD. Am J Kidney Dis 50:622–630

    Article  PubMed  Google Scholar 

  12. Polak JF, Pencina MJ, Pencina KM, O'Donnell CJ, Wolf PA, D'Agostino RB Sr (2011) Carotid- wall intima-media thickness and cardiovascular events. N Engl J Med 365:213–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, Boutouyrie P, Cameron J, Chen CH, Cruickshank JK, Hwang SJ, Lakatta EG, Laurent S, Maldonado J, Mitchell GF, Najjar SS, Newman AB, Ohishi M, Pannier B, Pereira T, Vasan RS, Shokawa T, Sutton-Tyrell K, Verbeke F, Wang KL, Webb DJ, Willum HT, Zoungas S, McEniery CM, Cockcroft JR, Wilkinson IB (2014) Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol 63:636–646

    Article  PubMed  Google Scholar 

  14. Vlachopoulos C, Aznaouridis K, Stefanadis C (2010) Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol 55:1318–1327

    Article  PubMed  Google Scholar 

  15. Morrison KM, Dyal L, Conner W, Helden E, Newkirk L, Yusuf S, Lonn E (2010) Cardiovascular risk factors and non-invasive assessment of subclinical atherosclerosis in youth. Atherosclerosis 208:501–505

    Article  CAS  PubMed  Google Scholar 

  16. Aggoun Y, Szezepanski I, Bonnet D (2005) Noninvasive assessment of arterial stiffness and risk of atherosclerotic events in children. Pediatr Res 58:173–178

    Article  PubMed  Google Scholar 

  17. Zieman SJ, Melenovsky V, Kass DA (2005) Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol 25:932–943

    Article  CAS  PubMed  Google Scholar 

  18. Narverud I, Retterstol K, Iversen PO, Halvorsen B, Ueland T, Ulven SM, Ose L, Aukrust P, Veierod MB, Holven KB (2014) Markers of atherosclerotic development in children with familial hypercholesterolemia: a literature review. Atherosclerosis 235:299–309

    Article  CAS  PubMed  Google Scholar 

  19. Kaidar M, Berant M, Krauze I, Cleper R, Mor E, Bar-Nathan N, Davidovits M (2014) Cardiovascular risk factors in children after kidney transplantation—from short-term to long- term follow-up. Pediatr Transplant 18:23–28

    Article  PubMed  Google Scholar 

  20. Holmberg C, Jalanko H (2016) Long-term effects of paediatric kidney transplantation. Nat Rev Nephrol 12:301–311

    Article  CAS  PubMed  Google Scholar 

  21. Hoorn EJ, Walsh SB, McCormick JA, Zietse R, Unwin RJ, Ellison DH (2012) Pathogenesis of calcineurin inhibitor-induced hypertension. J Nephrol 25:269–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Han JC, Lawlor DA, Kimm SY (2010) Childhood obesity. Lancet 375:1737–1748

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sharma AK, Metzger DL, Daymont C, Hadjiyannakis S, Rodd CJ (2015) LMS tables for waist- circumference and waist-height ratio Z-scores in children aged 5-19 y in NHANES III: association with cardio-metabolic risks. Pediatr Res 78:723–729

  24. Van Bortel LM, Duprez D, Starmans-Kool MJ, Safar ME, Giannattasio C, Cockcroft J, Kaiser DR, Thuillez C (2002) Clinical applications of arterial stiffness, task force III: recommendations for user procedures. Am J Hypertens 15:445–452

    Article  PubMed  Google Scholar 

  25. Kracht D, Shroff R, Baig S, Doyon A, Jacobi C, Zeller R, Querfeld U, Schaefer F, Wuhl E, Schmidt BM, Melk A (2011) Validating a new oscillometric device for aortic pulse wave velocity measurements in children and adolescents. Am J Hypertens 24:1294–1299

    Article  PubMed  Google Scholar 

  26. Thurn D, Doyon A, Sozeri B, Bayazit AK, Canpolat N, Duzova A, Querfeld U, Schmidt BM, Schaefer F, Wuhl E, Melk A (2015) Aortic pulse wave velocity in healthy children and adolescents: reference values for the vicorder device and modifying factors. Am J Hypertens 28(12):1480–1488

  27. Touboul PJ, Hennerici MG, Meairs S, Adams H, Amarenco P, Bornstein N, Csiba L, Desvarieux M, Ebrahim S, Hernandez HR, Jaff M, Kownator S, Naqvi T, Prati P, Rundek T, Sitzer M, Schminke U, Tardif JC, Taylor A, Vicaut E, Woo KS (2012) Mannheim carotid intima-media thickness and plaque consensus (2004-2006-2011). An update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European stroke conferences, Mannheim, Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011. Cerebrovasc Dis 34:290–296

    Article  PubMed  PubMed Central  Google Scholar 

  28. Doyon A, Kracht D, Bayazit AK, Deveci M, Duzova A, Krmar RT, Litwin M, Niemirska A, Oguz B, Schmidt BM, Sozeri B, Querfeld U, Melk A, Schaefer F, Wuhl E (2013) Carotid artery intima-media thickness and distensibility in children and adolescents: reference values and role of body dimensions. Hypertension 62(3):550–556

  29. de Simone G, Daniels SR, Devereux RB, Meyer RA, Roman MJ, de Divitiis O, Alderman MH (1992) Left ventricular mass and body size in normotensive children and adults: assessment of allometric relations and impact of overweight. J Am Coll Cardiol 20:1251-1260

  30. Daniels SR, Kimball TR, Morrison JA, Khoury P, Meyer RA (1995) Indexing left ventricular mass to account for differences in body size in children and adolescents without cardiovascular disease. Am J Cardiol 76:699–701

    Article  CAS  PubMed  Google Scholar 

  31. Foster BJ, MacKie AS, Mitsnefes M, Ali H, Mamber S, Colan SD (2008) A novel method of expressing left ventricular mass relative to body size in children. Circulation 117:2769–2775

    Article  PubMed  Google Scholar 

  32. Wuhl E, Witte K, Soergel M, Mehls O, Schaefer F (2002) Distribution of 24-h ambulatory blood pressure in children: normalized reference values and role of body dimensions. J Hypertens 20:1995–2007

    Article  PubMed  Google Scholar 

  33. Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637

    Article  PubMed  PubMed Central  Google Scholar 

  34. National Cholesterol Education Program (NCEP) (1992) Highlights of the report of the expert panel on blood cholesterol levels in children and adolescents. Pediatrics 89:495–501

    Google Scholar 

  35. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, Christiaens T, Cifkova R, De BG, Dominiczak A, Galderisi M, Grobbee DE, Jaarsma T, Kirchhof P, Kjeldsen SE, Laurent S, Manolis AJ, Nilsson PM, Ruilope LM, Schmieder RE, Sirnes PA, Sleight P, Viigimaa M, Waeber B, Zannad F (2013) 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens 31:1281–1357

    Article  CAS  PubMed  Google Scholar 

  36. Dzau V, Braunwald E (1991) Resolved and unresolved issues in the prevention and treatment of coronary artery disease: a workshop consensus statement. Am Heart J 121:1244–1263

    Article  CAS  PubMed  Google Scholar 

  37. London GM, Marchais SJ, Guerin AP, Pannier B (2004) Arterial stiffness: pathophysiology and clinical impact. Clin Exp Hypertens 26:689–699

    Article  PubMed  Google Scholar 

  38. Al NY, Moura MC, Mertens L, McCrindle BW, Parekh RS, Ng VL, Church PC, Mouzaki M (2016) Subclinical cardiovascular changes in pediatric solid organ transplant recipients: a systematic review and meta-analysis. Pediatr Transplant 20:530–539

    Article  Google Scholar 

  39. Cseprekal O, Kis E, Schaffer P, Othmane TH, Fekete BC, Vannay A, Szabo AJ, Remport A, Szabo A, Tulassay T, Reusz GS (2009) Pulse wave velocity in children following renal transplantation. Nephrol Dial Transplant 24:309–315

    Article  PubMed  Google Scholar 

  40. Aoun B, Lorton F, Wannous H, Levy B, Ulinski T (2010) Aortic stiffness in ESRD children before and after renal transplantation. Pediatr Nephrol 25:1331–1336

    Article  PubMed  Google Scholar 

  41. Wesseling-Perry K, Bacchetta J (2011) CKD-MBD after kidney transplantation. Pediatr Nephrol 26:2143–2151

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bonthuis M, Busutti M, van Stralen KJ, Jager KJ, Baiko S, Bakkaloglu S, Battelino N, Gaydarova M, Gianoglio B, Parvex P, Gomes C, Heaf JG, Podracka L, Kuzmanovska D, Molchanova MS, Pankratenko TE, Papachristou F, Reusz G, Sanahuja MJ, Shroff R, Groothoff JW, Schaefer F, Verrina E (2015) Mineral metabolism in European children living with a renal transplant: a European society for paediatric nephrology/european renal association-European dialysis and transplant association registry study. Clin J Am Soc Nephrol 10:767–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sinha MD, Keehn L, Milne L, Sofocleous P, Chowienczyk PJ (2015) Decreased arterial elasticity in children with nondialysis chronic kidney disease is related to blood pressure and not to glomerular filtration rate. Hypertension 66:809–815

    Article  CAS  PubMed  Google Scholar 

  44. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351:1296–1305

    Article  CAS  PubMed  Google Scholar 

  45. Shirali AC, Bia MJ (2008) Management of cardiovascular disease in renal transplant recipients. Clin J Am Soc Nephrol 3:491–504

    Article  CAS  PubMed  Google Scholar 

  46. Ekberg H, Tedesco-Silva H, Demirbas A, Vitko S, Nashan B, Gurkan A, Margreiter R, Hugo C, Grinyo JM, Frei U, Vanrenterghem Y, Daloze P, Halloran PF (2007) Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med 357:2562–2575

    Article  CAS  PubMed  Google Scholar 

  47. Reineke DC, Muller-Schweinitzer E, Winkler B, Kunz D, Konerding MA, Grussenmeyer T, Carrel TP, Eckstein FS, Grapow MT (2015) Rapamycin impairs endothelial cell function in human internal thoracic arteries. Eur J Med Res 20:59

    Article  PubMed  PubMed Central  Google Scholar 

  48. Barilli A, Visigalli R, Sala R, Gazzola GC, Parolari A, Tremoli E, Bonomini S, Simon A, Closs EI, Dall'Asta V, Bussolati O (2008) In human endothelial cells rapamycin causes mTORC2 inhibition and impairs cell viability and function. Cardiovasc Res 78:563–571

    Article  CAS  PubMed  Google Scholar 

  49. Togni M, Windecker S, Cocchia R, Wenaweser P, Cook S, Billinger M, Meier B, Hess OM (2005) Sirolimus-eluting stents associated with paradoxic coronary vasoconstriction. J Am Coll Cardiol 46:231–236

    Article  CAS  PubMed  Google Scholar 

  50. Fuke S, Maekawa K, Kawamoto K, Saito H, Sato T, Hioka T, Ohe T (2007) Impaired endothelial vasomotor function after sirolimus-eluting stent implantation. Circ J 71:220–225

    Article  CAS  PubMed  Google Scholar 

  51. Zanchetti A, Hennig M, Hollweck R, Bond G, Tang R, Cuspidi C, Parati G, Facchetti R, Mancia G (2009) Baseline values but not treatment-induced changes in carotid intima-media thickness predict incident cardiovascular events in treated hypertensive patients: findings in the European Lacidipine study on atherosclerosis (ELSA). Circulation 120:1084–1090

    Article  PubMed  Google Scholar 

  52. Litwin M, Wuhl E, Jourdan C, Niemirska A, Schenk JP, Jobs K, Grenda R, Wawer ZT, Rajszys P, Mehls O, Schaefer F (2008) Evolution of large-vessel arteriopathy in paediatric patients with chronic kidney disease. Nephrol Dial Transplant 23:2552–2557

    Article  PubMed  Google Scholar 

  53. Brady TM, Schneider MF, Flynn JT, Cox C, Samuels J, Saland J, White CT, Furth S, Warady BA, Mitsnefes M (2012) Carotid intima-media thickness in children with CKD: results from the CKiD study. Clin J Am Soc Nephrol 7:1930–1937

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pall D, Juhasz M, Lengyel S, Molnar C, Paragh G, Fulesdi B, Katona E (2010) Assessment of target-organ damage in adolescent white-coat and sustained hypertensives. J Hypertens 28:2139–2144

    Article  CAS  PubMed  Google Scholar 

  55. Stabouli S, Kotsis V, Papamichael C, Constantopoulos A, Zakopoulos N (2005) Adolescent obesity is associated with high ambulatory blood pressure and increased carotid intimal- medial thickness. J Pediatr 147:651–656

    Article  PubMed  Google Scholar 

  56. Cecelja M, Chowienczyk P (2012) Role of arterial stiffness in cardiovascular disease. JRSM Cardiovasc Dis 1:cvd.2012.012016. doi:10.1258/cvd.2012.012016

  57. Krmar RT, Balzano R, Jogestrand T, Cedazo-Minguez A, Englund MS, Berg UB (2008) Prospective analysis of carotid arterial wall structure in pediatric renal transplants with ambulatory normotension and in treated hypertensive recipients. Pediatr Transplant 12:412–419

    Article  PubMed  Google Scholar 

  58. Sinha MD, Tibby SM, Rasmussen P, Rawlins D, Turner C, Dalton RN, Reid CJ, Rigden SP, Booth CJ, Simpson JM (2011) Blood pressure control and left ventricular mass in children with chronic kidney disease. Clin J Am Soc Nephrol 6:543–551

    Article  PubMed  PubMed Central  Google Scholar 

  59. El-Husseini AA, Sheashaa HA, Hassan NA, El-Demerdash FM, Sobh MA, Ghoneim MA (2004) Echocardiographic changes and risk factors for left ventricular hypertrophy in children and adolescents after renal transplantation. Pediatr Transplant 8:249–254

    Article  PubMed  Google Scholar 

  60. Taddei S, Nami R, Bruno RM, Quatrini I, Nuti R (2011) Hypertension, left ventricular hypertrophy and chronic kidney disease. Heart Fail Rev 16:615–620

    Article  PubMed  Google Scholar 

  61. Opelz G, Dohler B (2005) Improved long-term outcomes after renal transplantation associated with blood pressure control. Am J Transplant 5:2725–2731

    Article  PubMed  Google Scholar 

  62. Paripovic D, Kostic M, Spasojevic B, Kruscic D, Peco-Antic A (2010) Masked hypertension and hidden uncontrolled hypertension after renal transplantation. Pediatr Nephrol 25:1719–1724

    Article  PubMed  Google Scholar 

  63. Stabouli S, Printza N, Dotis J, Gkogka C, Kollios K, Kotsis V, Papachristou F (2016) Long-term changes in blood pressure after pediatric kidney transplantation. Am J Hypertens 29:860–865

    Article  PubMed  Google Scholar 

  64. Gulhan B, Topaloglu R, Karabulut E, Ozaltin F, Aki FT, Bilginer Y, Besbas N (2014) Post- transplant hypertension in pediatric kidney transplant recipients. Pediatr Nephrol 29:1075–1080

    Article  PubMed  Google Scholar 

  65. Seeman T (2012) Ambulatory blood pressure monitoring in pediatric renal transplantation. Curr Hypertens Rep 14:608–618

    Article  PubMed  Google Scholar 

  66. Buscher R, Vester U, Wingen AM, Hoyer PF (2004) Pathomechanisms and the diagnosis of arterial hypertension in pediatric renal allograft recipients. Pediatr Nephrol 19:1202–1211

    Article  CAS  PubMed  Google Scholar 

  67. Mangray M, Vella JP (2011) Hypertension after kidney transplant. Am J Kidney Dis 57:331–341

    Article  CAS  PubMed  Google Scholar 

  68. Weaver DJ Jr, Selewski D, Janjua H, Iorember F (2016) Improved cardiovascular risk factors in pediatric renal transplant recipients on steroid avoidance immunosuppression: a study of the Midwest pediatric nephrology consortium. Pediatr Transplant 20:59–67

    Article  CAS  PubMed  Google Scholar 

  69. Schaefer F, Doyon A, Azukaitis K, Bayazit A, Canpolat N, Duzova A, Niemirska A, Sozeri B, Thurn D, Anarat A, Ranchin B, Litwin M, Caliskan S, Candan C, Baskin E, Yilmaz E, Mir S, Kirchner M, Sander A, Haffner D, Melk A, Wuhl E, Shroff R, Querfeld U (2017) Cardiovascular phenotypes in children with CKD: the 4C study. Clin J Am Soc Nephrol 12:19–28

Download references

Acknowledgments

This study has been made possible by grants of the German Federal Ministry of Education and Research (reference number: 01EO0802) and the Roche Organ Transplantation Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anette Melk.

Ethics declarations

The study was approved by all three local medical ethics committees and all patients and parents gave written informed consent (# 504–2009). Procedures were carried out according to the Helsinki Declaration.

Disclosure

The authors declare that they have no conflicts to disclose.

Additional information

“Part of the ‘What’s New in Renal Transplantation’ Topical Collection”

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borchert-Mörlins, B., Thurn, D., Schmidt, B.M.W. et al. Factors associated with cardiovascular target organ damage in children after renal transplantation. Pediatr Nephrol 32, 2143–2154 (2017). https://doi.org/10.1007/s00467-017-3771-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-017-3771-8

Keywords

Navigation