Log in

A thermodynamic motivated RCCM damage interface model in an explicit transient dynamics framework

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A framework to solve fast dynamic problems involving a non-smooth interface behavior with contact and decohesion is under concern. In previous works, unilateral contact and impact have been studied in explicit dynamics but no damage nor cohesion were involved. Combining a contact problem and a thermodynamically motivated damage model within the so-called CD-Lagrange explicit dynamics scheme is the aim of this work. To do so, RCCM macroscopic model of adhesion with damage of the interface is studied. The thermodynamic motivation of the model and the use of a symplectic explicit scheme creates a framework based on good energy balance. In this work, illustrations and feasibility are shown for small displacement problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Algorithm 3
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Fekak F-E, Brun M, Gravouil A, Depale B (2017) A new heterogeneous asynchronous explicit-implicit time integrator for nonsmooth dynamics. Comput Mech 60:1–21. https://doi.org/10.1007/s00466-017-1397-0

    Article  MathSciNet  Google Scholar 

  2. Di Stasio J (2021) The CD Lagrange scheme, a robust explicit time-integrator for impact dynamics : a new singular mass formulation, and an extension to deformable-deformable contact. Ph.D. Thesis, INSA, Lyon

  3. Talon C, Curnier A (2003) A model of adhesion oupled to contact and friction. Eur J Mech - A/Solids 22:545–565. https://doi.org/10.1016/S0997-7538(03)00046-9

    Article  MathSciNet  Google Scholar 

  4. Chiaruttini V, Geoffroy D, Riolo V, Bonnet M (2012) An adaptive algorithm for cohesive zone model and arbitrary crack propagation. Eur J Comput Mech 21(3–6):208–218. https://doi.org/10.1080/17797179.2012.744544

    Article  Google Scholar 

  5. Pundir M, Anciaux G (2021) Coupling between cohesive element method and node-to-segment contact algorithm: implementation and application. Int J Numer Methods Eng 122(16):4333–4353. https://doi.org/10.1002/nme.6705

    Article  MathSciNet  Google Scholar 

  6. Eghbalpoor R, Akhavan-Safar A, Jalali S, Ayatollahi MR, Da Silva LFM (2023) A progressive damage model to predict the shear and mixed-mode low-cycle impact fatigue life of adhesive joints using cohesive elements. Finite Elements Anal Des. https://doi.org/10.1016/j.finel.2022.103894

    Article  Google Scholar 

  7. Alfano G, Sacco E (2006) Combining interface damage and friction in a cohesive-zone model. Int J Numer Methods Eng 68:542–582. https://doi.org/10.1002/nme.1728

    Article  MathSciNet  Google Scholar 

  8. Collins-Craft NA, Bourrier FVA (2022) On the formulation and implementation of extrinsic cohesive zone models with contact. Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.2022.115545

    Article  MathSciNet  Google Scholar 

  9. Kendall K (1971) The adhesion and surface energy of elastic solids. J Phys D Appl Phys 4(8):1186–1195. https://doi.org/10.1088/0022-3727/4/8/320

    Article  Google Scholar 

  10. Raous M, Cangémi L, Cocu M (1999) A consistent model coupling adhesion, friction, and unilateral contact. Comput Methods Appl Mech Eng 177(3–4):383–399. https://doi.org/10.1016/s0045-7825(98)00389-2

    Article  MathSciNet  Google Scholar 

  11. Raous M, Monerie Y (2002) Unilateral contact, friction and adhesion: 3D cracks in composite materials. In: Martins JAC, Marques MDPM (eds) Contact mechanics. Solid mechanics and its applications book series, vol 103. pp 333–346. https://doi.org/10.1007/978-94-017-1154-8_36

    Chapter  Google Scholar 

  12. Del Piero G, Raous M (2010) A unified model for adhesive interfaces with damage, viscosity, and friction. Eur J Mech A Solids 29(4):496–507. https://doi.org/10.1016/j.euromechsol.2010.02.004

    Article  MathSciNet  Google Scholar 

  13. Brink T, Molinari J-F (2019) Adhesive wear mechanisms in the presence of weak interfaces: insights from an amorphous model system. Phys Rev Mater 3:053604. https://doi.org/10.1103/PhysRevMaterials.3.053604. ar**v:1901.07466 [cond-mat.mtrl-sci]

    Article  Google Scholar 

  14. Dimaki AV, Shilko EV, Dudkin IV, Psakhie SG, Popov VL (2020) Role of adhesion stress in controlling transition between plastic, grinding and breakaway regimes of adhesive wear. Sci Rep. https://doi.org/10.1038/s41598-020-57429-5

    Article  Google Scholar 

  15. Medina S, Dini D (2014) A numerical model for the deterministic analysis of adhesive rough contacts down to the nano-scale. Int J Solids Struct 51(14):2620–2632. https://doi.org/10.1016/j.ijsolstr.2014.03.033

    Article  Google Scholar 

  16. Persson BNJ, Albohr O, Tartaglino U, Volokitin AI, Tosatti E (2005) On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J Phys: Condens Matter 17:1–62. https://doi.org/10.1088/0953-8984/17/1/R01. ar**v:cond-mat/0502419 [cond-mat.mtrl-sci]

    Article  Google Scholar 

  17. Hensel R, Moh K, Arzt E (2018) Engineering micropatterned dry adhesives: from contact theory to handling applications. Adv Funct Mater 28:1800865. https://doi.org/10.1002/adfm.201800865

    Article  Google Scholar 

  18. Popov V (2021) Energetic criterion for adhesion in viscoelastic contacts with non-entropic surface interaction. Rep Mech Eng 2(1):57–64. https://doi.org/10.31181/rme200102057p

    Article  Google Scholar 

  19. Raous M, Schryve M, Cocou M (2006) Recoverable adhesion and friction. In: Banagiotopoulos CC (ed) Nonsmooth/nonconvex mechanics with applications in engineering, pp 165–172. https://hal.archives-ouvertes.fr/hal-03177510

  20. Raous M (2011) Interface models coupling adhesion and friction. C R Méc 339(7–8):491–501. https://doi.org/10.1016/j.crme.2011.05.007

    Article  Google Scholar 

  21. Cocou M, Schryve M, Raous M (2010) A dynamic unilateral contact problem with adhesion and friction in viscoelasticity. Z Angew Math Phys 61:721–743. https://doi.org/10.1007/s00033-009-0027-x

    Article  MathSciNet  Google Scholar 

  22. Allix O, Deü J-F (1997) Delayed-damage modelling for fracture prediction of laminated composites under dynamic loading. Eng Trans 45(1):29–46. https://doi.org/10.24423/engtrans.680.1997

    Article  Google Scholar 

  23. Courant R, Friedrichs K, Lewy H (1928) Über die partiellen differenzengleichungen der mathematischen physik. Math Ann. https://doi.org/10.1007/BF01448839

    Article  Google Scholar 

  24. Moreau JJ (1988) Unilateral contact and dry friction in finite freedom dynamics. In: Moreau JJ, Panagiotopoulos PD (eds) Nonsmooth mechanics and applications, pp 1–82. https://doi.org/10.1007/978-3-7091-2624-0_1

  25. Jean M, Acary V, Monerie Y (2001) Non-smooth contact dynamics approach of cohesive materials. Philos Trans R Soc Lond Ser A: Math Phys Eng Sci 359(1789):2497–2518. https://doi.org/10.1098/rsta.2001.0906

    Article  MathSciNet  Google Scholar 

  26. Budzik MK, Wolfahrt M, Reis P, Kozłowski M, Sena-Cruz J, Papadakis L, Saleh MN, Machalicka KV, Freitas ST, Vassilopoulos AP (2021) Testing mechanical performance of adhesively bonded composite joints in engineering applications: an overview. J Adhes. https://doi.org/10.1080/00218464.2021.1953479

    Article  Google Scholar 

  27. Ghanbarzadeh A, Faraji M, Neville A (2020) Deterministic normal contact of rough surfaces with adhesion using a surface integral method. Proc R Soc A: Math Phys Eng Sci 476(2242):20200281. https://doi.org/10.1098/rspa.2020.0281

    Article  MathSciNet  Google Scholar 

  28. Grierson DS, Flater EE, Carpick RW (2005) Accounting for the JKR-DMT transition in adhesion and friction measurements with atomic force microscopy. J Adhes Sci Technol 19(3–5):291–311. https://doi.org/10.1163/1568561054352685

    Article  Google Scholar 

  29. Fremond M (1987) Adhesion of solids. J Méc Théor Appl 6(3):383–407

    MathSciNet  Google Scholar 

  30. Rouleau L, Legay A, Deü J-F (2018) Interface finite elements for the modelling of constrained viscoelastic layers. Compos Struct 204:847–854. https://doi.org/10.1016/j.compstruct.2018.07.126

  31. Chaboche J-L (1997) Thermodynamic formulation of constitutive equations and application to the viscoplasticity and viscoelasticity of metals and polymers. Int J Solids Struct 34(18):2239–2254. https://doi.org/10.1016/S0020-7683(96)00162

    Article  Google Scholar 

  32. Terfaya N, Berga A, Raous M (2015) A bipotential method coupling contact, friction and adhesion. Int Rev Mech Eng (IREME) 9(4):341. https://doi.org/10.15866/ireme.v9i4.5841

    Article  Google Scholar 

  33. De Saxcé G, Feng Z-Q (1998) The bipotential method: a constructive approach to design the complete contact law with friction and improved numerical algorithms. Math Comput Model 28(4–8):225–245. https://doi.org/10.1016/s0895-7177(98)00119-8

  34. Carlberger T, Stigh U (2007) An explicit FE-model of impact fracture in an adhesive joint. Eng Fract Mech 74:2247–2262. https://doi.org/10.1016/j.engfracmech.2006.10.016

    Article  Google Scholar 

  35. Belytschko T, Liu WK, Moran B, Elkhodary IK (2014) Nonlinear finite elements for continua and structures

  36. Hetherington J, Askes H (2014) A mass matrix formulation for cohesive surface elements. Theor Appl Fract Mech 69:110–117. https://doi.org/10.1016/j.tafmec.2013.11.011

    Article  Google Scholar 

  37. Pagani M, Reese S, Perego U (2014) Computationnaly efficient explicit nonlinear analyses using reduced integration-based solid-shell finite elements. Comput Methods Appl Mech Eng 268:141–159. https://doi.org/10.1016/j.cma.2013.09.005

    Article  Google Scholar 

  38. Di Stasio J, Dureisseix D, Gravouil A, Georges G, Homolle T (2019) Benchmark cases for robust explicit time integrators in non-smooth transient dynamics. Adv Model Simul Eng Sci. https://doi.org/10.1186/s40323-019-0126-y

    Article  Google Scholar 

  39. Moreau K, Moës N, Picart D, Stainier L (2014) Explicit dynamics with a non-local damage model using the thick level set approach. Int J Numer Methods Eng 102:808–838. https://doi.org/10.1002/nme.4824

    Article  MathSciNet  Google Scholar 

  40. Pijaudier-Cabot G, Grégoire D (2014) A review of non local continuum damage: modelling of failure? Netw Heterog Media 9(4):575–597. https://doi.org/10.3934/nhm.2014.9.575

    Article  MathSciNet  Google Scholar 

  41. Zghal J, Moës N (2021) Analysis of the delayed damage model for three one-dimensional loading scenarii. C R Phys 21(6):527–537. https://doi.org/10.5802/crphys.42

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the French National Association for Research and Technology (ANRT, CIFRE Grant No. 2021/0957). This work was supported by the “Manufacture Française de Pneumatiques Michelin”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Larousse.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larousse, P., Dureisseix, D., Gravouil, A. et al. A thermodynamic motivated RCCM damage interface model in an explicit transient dynamics framework. Comput Mech (2024). https://doi.org/10.1007/s00466-024-02489-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00466-024-02489-x

Keywords

Navigation