Log in

Patient-specific analysis of post-operative aortic hemodynamics: a focus on thoracic endovascular repair (TEVAR)

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The purpose of this study is to quantitatively evaluate the impact of endovascular repair on aortic hemodynamics. The study addresses the assessment of post-operative hemodynamic conditions of a real clinical case through patient-specific analysis, combining accurate medical image analysis and advanced computational fluid-dynamics (CFD). Although the main clinical concern was firstly directed to the endoluminal protrusion of the prosthesis, the CFD simulations have demonstrated that there are two other important areas where the local hemodynamics is impaired and a disturbed blood flow is present: the first one is the ostium of the subclavian artery, which is partially closed by the graft; the second one is the stenosis of the distal thoracic aorta. Besides the clinical relevance of these specific findings, this study highlights how CFD analyses allow to observe important flow effects resulting from the specific features of patient vessel geometries. Consequently, our results demonstrate the potential impact of computational biomechanics not only on the basic knowledge of physiopathology, but also on the clinical practice, thanks to a quantitative extraction of knowledge made possible by merging medical data and mathematical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Delamination of the vessel wall layers creating a false lumen, which results in an undesired alternative path for the bloodstream, normally flowing through the native true lumen.

  2. Abnormal, local enlargement of the vessel diameter.

  3. An endoleak is a persistent blood flow within the aneurysm sac after endovascular aortic repair; different types of endoleaks (I–IV) are described.

  4. Vascular region corresponding to one of the stent-graft extremities, where the adhesion between the prosthesis and the vessel wall is essential to guarantee the implant stability.

  5. Type III endoleaks can occur when there is a defect in the fabric of the graft, due to tear induced by the stent fracture, or due to separation of the modular components of the endograft.

References

  1. Antiga L (2012) VMTK:Vascular Modeling Toolkit. Accessed 1 May 2013. http://www.vmtk.com

  2. Auricchio F, Conti M, Marconi S, Reali A, Tolenaar JL, Trimarchi S (2013) Patient-specific aortic endografting simulation: from diagnosis to prediction. Comput Biol Med 43(4):386–394. doi:10.1016/j.compbiomed.2013.01.006. URL http://www.sciencedirect.com/science/article/pii/S0010482513000206

    Google Scholar 

  3. Canaud L, Alric P, Desgranges P, Marzelle J, Marty-Ané C, Becquemin JP (2010) Factors favoring stent-graft collapse after thoracic endovascular aortic repair. J Thorac Cardiovasc Surg 139(5):1153–1157

    Article  Google Scholar 

  4. Cheng SW, Lam ES, Fung GS, Ho P, Ting AC, Chow KW (2008) A computational fluid dynamic study of stent graft remodeling after endovascular repair of thoracic aortic dissections. J Vasc Surg 48(2):303–310

    Article  Google Scholar 

  5. Chiastra C, Morlacchi S, Pereira S, Dubini G, Migliavacca F (2012) Computational fluid dynamics of stented coronary bifurcations studied with a hybrid discretization method. Eur J Mech - B/Fluids 35:76–84

    Article  Google Scholar 

  6. Czerny M, Funovics M, Sodeck G, Dumfarth J, Schoder M, Juraszek A (2010) Long-term results of thoracic endovascular aortic repair in atherosclerotic aneurysms involving the descending aorta. J Thorac Cardiovasc Surg 140:84–S179. doi:10.1016/j.jtcvs.2010.06.031

    Google Scholar 

  7. De Santis G, Trachet B, Conti M, De Beule M, Morbiducci U, Mortier P, Segers P, Verdonck P, Verhegghe B (2013) A computational study of the hemodynamic impact of open- versus closed-cell stent design in carotid artery stenting. Artif Organs 37(7):E96–E106

    Article  Google Scholar 

  8. Figueroa C, Taylor C, Chiou A, Yeh V, Zarins C (2009) Magnitude and direction of pulsatile displacement forces acting on thoracic aortic endografts. J Endovasc Ther 16(3):350–358

    Article  Google Scholar 

  9. Figueroa CA, Zarins CK (2011) Computational analysis of displacement forces acting on endografts used to treat aortic aneurysms. In: McGloughlin T (ed) Biomechanics and mechanobiology of aneurysms, studies in mechanobiology, tissue engineering and biomaterials, vol 7. Springer, Berlin Heidelberg, pp 221–246

    Chapter  Google Scholar 

  10. Formaggia L, Quarteroni A, Veneziani A (eds) (2009) Cardiovascular Mathematics. MMS. Springer, Milan

    Google Scholar 

  11. Fung GS, Lam S, Cheng SW, Chow K (2008) On stent-graft models in thoracic aortic endovascular repair: a computational investigation of the hemodynamic factors. Comput Biol Med 38(4):484–489

    Article  Google Scholar 

  12. Jonker F, Schlosser F, Geirsson A, Sumpio B, Moll F, Muhs B (2010) Endograft collapse after thoracic endovascular aortic repair. J Endovasc Ther 17(6):725–734

    Article  Google Scholar 

  13. Kasirajan K, Dake MD, Lumsden A, Bavaria J, Makaroun MS (2012) Incidence and outcomes after infolding or collapse of thoracic stent grafts. J Vasc Surg 55(3):652–658

    Article  Google Scholar 

  14. Kim H, Vignon-Clementel I, Figueroa C, LaDisa J, Jansen K, Feinstein J, Taylor C (2009) On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Ann Biomed Eng 37(11):2153–2169. doi:10.1007/s10439-009-9760-8. URL http://dx.doi.org/10.1007/s10439-009-9760-8

  15. Lam S, Fung G, Cheng S, Chow K (2008) A computational study on the biomechanical factors related to stent-graft models in the thoracic aorta. Med Biol Eng Comput 46:1129–1138

    Article  Google Scholar 

  16. Midulla M, Moreno R, Baali A, Chau M, Negre-Salvayre A, Nicoud F, Pruvo JP, Haulon S, Rousseau H (2012) Haemodynamic imaging of thoracic stent-grafts by computational fluid dynamics (cfd): presentation of a patient-specific method combining magnetic resonance imaging and numerical simulations. Eur Radiol 22(10):2094–2102. doi:10.1007/s00330-012-2465-7. URL http://dx.doi.org/10.1007/s00330-012-2465-7

  17. Morbiducci U, Ponzini R, Rizzo G, Cadioli M, Esposito A, Cobelli F, Maschio A, Montevecchi F, Redaelli A (2009) In vivo quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase contrast magnetic resonance imaging. Ann Biomed Eng 37(3):516–531. doi:10.1007/s10439-008-9609-6. URL http://dx.doi.org/10.1007/s10439-008-9609-6

  18. Nichols W, O’Rourke M, Charalambos V (2005) McDonald’s blood flow in arteries: theoretical, experimental and clinical principles. Hodder Education Publishers, Abington

    Google Scholar 

  19. Pasta S, Cho JS, Dur O, Pekkan K, Vorp DA (2013) Computer modeling for the prediction of thoracic aortic stent graft collapse. J Vasc Surg 57(5):1353–1361. doi:10.1016/j.jvs.2012.09.063. URL http://www.sciencedirect.com/science/article/pii/S074152141202099X

  20. Prasad A, To L, Gorrepati M, Zarins C, Figueroa C (2011) Computational analysis of stresses acting on intermodular junctions in thoracic aortic endografts. J Endovasc Ther 18(4):559–568

    Article  Google Scholar 

  21. Shukla AJ, Jeyabalan G, Cho JS (2011) Late collapse of a thoracic endoprosthesis. J Vasc Surg 53(3):798–801

    Article  Google Scholar 

  22. Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar T (2012) Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. Comput Mech 50(6):675–686

    Article  MATH  MathSciNet  Google Scholar 

  23. Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar T (2013) Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. Comput Mech 51(6):1061–1073

    Article  MATH  MathSciNet  Google Scholar 

  24. Ueda T, Fleischmann D, Dake MD, Rubin GD, Sze DY (2010) Incomplete endograft apposition to the aortic arch: bird-beak configuration increases risk of endoleak formation after thoracic endovascular aortic repair. Radiology 255(2):645–652

    Article  Google Scholar 

  25. Yushkevich P, Piven J, Hazlett H, Smith R, Ho S, Gee J, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31:1116–1128

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially funded by: the Cariplo Foundation through the Project no. 2009.2822; ERC Starting Grant through the Project ISOBIO: Isogeometric Methods for Biomechanics (No. 259229); Ministero dell’Istruzione, dell’Università e della Ricerca through the Project no. 2010BFXRHS. The authors would like to acknowledge: Dr. T. Passerini for the support regarding the computational analysis; MD Matteo Pegorer, MD Jip Tolenaar, and MD G. H. W. van Bogerijen for the support regarding the data collection and clinical considerations; S. Marconi and Dr. M. Piccinelli for the support regarding the medical image elaboration. Moreover, Regione Lombardia and CINECA Consortium through a LISA Initiative (Laboratory for Interdisciplinary Advanced Simulation) 2013 grant are gratefully acknowledged.

Conflict of interest

The authors have no commercial, proprietary, or financial interest in any products or companies described in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Conti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auricchio, F., Conti, M., Lefieux, A. et al. Patient-specific analysis of post-operative aortic hemodynamics: a focus on thoracic endovascular repair (TEVAR). Comput Mech 54, 943–953 (2014). https://doi.org/10.1007/s00466-014-0976-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-0976-6

Keywords

Navigation