Log in

Long-term potassium-competitive acid blockers administration causes microbiota changes in rats

  • 2023 SAGES Oral
  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Vonoprazan is a new potassium-competitive acid blocker (P-CAB) that was recently approved by the FDA. It is associated with a fast onset of action and a longer acid inhibition time. Vonoprazan-containing therapy for helicobacter pylori eradication is highly effective and several studies have demonstrated that a vonoprazan-antibiotic regimen affects gut microbiota. However, the impact of vonoprazan alone on gut microbiota is still unclear.

Methods

We conducted a prospective randomized 12-week experimental trial with 18 Wistar rats. Rats were randomly assigned to one of 3 groups: (1) drinking water as negative control group, (2) oral vonoprazan (4 mg/kg) for 12 weeks, and (3) oral vonoprazan (4 mg/kg) for 4 weeks, followed by 8 weeks off vonoprazan. To investigate gut microbiota, we carried out a metagenomic shotgun sequencing of fecal samples at week 0 and week 12.

Results

For alpha diversity metrics at week 12, both long and short vonoprazan groups had lower Pielou’s evenness index than the control group (p = 0.019); however, observed operational taxonomic units (p = 0.332) and Shannon’s diversity index (p = 0.070) were not statistically different between groups. Beta diversity was significantly different in the three groups, using Bray–Curtis (p = 0.003) and Jaccard distances (p = 0.002). At week 12, differences in relative abundance were observed at all levels. At phylum level, short vonoprazan group had less of Actinobacteria (log fold change = − 1.88, adjusted p-value = 0.048) and Verrucomicrobia (lfc = − 1.76, p = 0.009).

At the genus level, long vonoprazan group had more Bacteroidales (lfc = 5.01, p = 0.021) and Prevotella (lfc = 7.79, p = 0.001). At family level, long vonoprazan group had more Lactobacillaceae (lfc = 0.97, p = 0.001), Prevotellaceae (lfc = 8.01, p < 0.001), and less Erysipelotrichaceae (lfc = − 2.9, p = 0.029).

Conclusion

This study provides evidence that vonoprazan impacts the gut microbiota and permits a precise delineation of the composition and relative abundance of the bacteria at all different taxonomic levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sachs G, Shin JM, Vagin O, Lambrecht N, Yakubov I, Munson K (2007) The gastric H, K atpase as a drug target: past, present, and future. J Clin Gastroenterol 41:S226–S242. https://doi.org/10.1097/MCG.0b013e31803233b7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chey WD, Mody RR, Izat E (2010) Patient and physician satisfaction with proton pump inhibitors (PPIs): are there opportunities for improvement? Dig Dis Sci 55:3415–3422. https://doi.org/10.1007/s10620-010-1209-2

    Article  CAS  PubMed  Google Scholar 

  3. Luo H-J, Deng W-Q, Zou K (2014) Protonated form: the potent form of potassium-competitive acid blockers. PLoS ONE 9:97688. https://doi.org/10.1371/journal.pone.0097688

    Article  CAS  Google Scholar 

  4. Sachs G, Shin JM, Hunt R (2010) Novel approaches to inhibition of gastric acid secretion. Curr Gastroenterol Rep 12:437–447. https://doi.org/10.1007/s11894-010-0149-5

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shin JM, Inatomi N, Munson K, Strugatsky D, Tokhtaeva E, Vagin O, Sachs G (2011) Characterization of a novel potassium-competitive acid blocker of the Gastric H, K-ATPase, 1-[5-(2-Fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1 H-pyrrol-3-yl]-N-ethylmethanamine monofumarate (TAK-438). J Pharmacol Exp Ther 339:412–420. https://doi.org/10.1124/jpet.111.185314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Garnock-Jones KP (2015) Vonoprazan: first global approval. Drugs 75:439–443. https://doi.org/10.1007/s40265-015-0368-z

    Article  CAS  PubMed  Google Scholar 

  7. Chen F, Jiang H, Xu J, Wang S, Meng D, Geng P, Dai D, Zhou Q, Zhou Y (2020) In vitro and in vivo rat model assessments of the effects of vonoprazan on the pharmacokinetics of venlafaxine. DDDT 14:4815–4824. https://doi.org/10.2147/DDDT.S276704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220–230. https://doi.org/10.1038/nature11550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kamada N, Chen GY, Inohara N, Núñez G (2013) Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 14:685–690. https://doi.org/10.1038/ni.2608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Human gut microbes associated with obesity. Nature 444:1022–1023. https://doi.org/10.1038/4441022a

    Article  CAS  PubMed  Google Scholar 

  11. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI (2011) Human nutrition, the gut microbiome and the immune system. Nature 474:327–336. https://doi.org/10.1038/nature10213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Qiu P, Ishimoto T, Fu L, Zhang J, Zhang Z, Liu Y (2022) The gut microbiota in inflammatory bowel disease. Front Cell Infect Microbiol 12:733992. https://doi.org/10.3389/fcimb.2022.733992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kandpal M, Indari O, Baral B, Jakhmola S, Tiwari D, Bhandari V, Pandey RK, Bala K, Sonawane A, Jha HC (2022) Dysbiosis of gut microbiota from the perspective of the gut-brain axis: role in the provocation of neurological disorders. Metabolites 12:1064. https://doi.org/10.3390/metabo12111064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mei S, Deng Z, Chen Y, Ning D, Guo Y, Fan X, Wang R, Meng Y, Zhou Q, Tian X (2022) Dysbiosis: the first hit for digestive system cancer. Front Physiol 13:1040991. https://doi.org/10.3389/fphys.2022.1040991

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hori Y, Matsukawa J, Takeuchi T, Nishida H, Ka**o M, Inatomi N (2011) A study comparing the antisecretory effect of TAK-438, a novel potassium-competitive acid blocker, with lansoprazole in animals. J Pharmacol Exp Ther 337:797–804. https://doi.org/10.1124/jpet.111.179556

    Article  CAS  PubMed  Google Scholar 

  16. Blanco-Miguez A, Beghini F, Cumbo F, McIver LJ, Thompson KN, Zolfo M, Manghi P, Dubois L, Huang KD, Thomas AM, Piccinno G, Piperni E, Punčochář M, Valles-Colomer M, Tett A, Giordano F, Davies R, Wolf J, Berry SE, Spector TD, Franzosa EA, Pasolli E, Asnicar F, Huttenhower C, Segata N (2022) Extending and improving metagenomic taxonomic profiling with uncharacterized species with MetaPhlAn 4. Bioinformatics 15:1–2

    Google Scholar 

  17. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu Y-X, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lin H, Peddada SD (2020) Analysis of compositions of microbiomes with bias correction. Nat Commun 11:3514. https://doi.org/10.1038/s41467-020-17041-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jackson MA, Verdi S, Maxan M-E, Shin CM, Zierer J, Bowyer RCE, Martin T, Williams FMK, Menni C, Bell JT, Spector TD, Steves CJ (2018) Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nat Commun 9:2655. https://doi.org/10.1038/s41467-018-05184-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jackson MA, Goodrich JK, Maxan M-E, Freedberg DE, Abrams JA, Poole AC, Sutter JL, Welter D, Ley RE, Bell JT, Spector TD, Steves CJ (2016) Proton pump inhibitors alter the composition of the gut microbiota. Gut 65:749–756. https://doi.org/10.1136/gutjnl-2015-310861

    Article  CAS  PubMed  Google Scholar 

  21. MetaHIT consortium, Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Krogh Pedersen H, Arumugam M, Kristiansen K, Yvonne Voigt A, Vestergaard H, Hercog R, Igor Costea P, Roat Kultima J, Li J, Jørgensen T, Levenez F, Dore J, Bjørn Nielsen H, Brunak S, Raes J, Hansen T, Wang J, Dusko Ehrlich S, Bork P, Pedersen O (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528:262–266. https://doi.org/10.1038/nature15766

    Article  CAS  PubMed Central  Google Scholar 

  22. Dethlefsen L, Relman DA (2011) Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci USA 108:4554–4561. https://doi.org/10.1073/pnas.1000087107

    Article  PubMed  Google Scholar 

  23. Imhann F, Vich Vila A, Bonder MJ, Lopez Manosalva AG, Koonen DPY, Fu J, Wijmenga C, Zhernakova A, Weersma RK (2017) The influence of proton pump inhibitors and other commonly used medication on the gut microbiota. Gut Microbes 8:351–358. https://doi.org/10.1080/19490976.2017.1284732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hojo M, Asahara T, Nagahara A, Takeda T, Matsumoto K, Ueyama H, Matsumoto K, Asaoka D, Takahashi T, Nomoto K, Yamashiro Y, Watanabe S (2018) Gut Microbiota Composition Before and After Use of Proton Pump Inhibitors. Dig Dis Sci 63:2940–2949. https://doi.org/10.1007/s10620-018-5122-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Imhann F, Bonder MJ, Vich Vila A, Fu J, Mujagic Z, Vork L, Tigchelaar EF, Jankipersadsing SA, Cenit MC, Harmsen HJM, Dijkstra G, Franke L, Xavier RJ, Jonkers D, Wijmenga C, Weersma RK, Zhernakova A (2016) Proton pump inhibitors affect the gut microbiome. Gut 65:740–748. https://doi.org/10.1136/gutjnl-2015-310376

    Article  CAS  PubMed  Google Scholar 

  26. Yang Y-CSH, Chang H-W, Lin I-H, Chien L-N, Wu M-J, Liu Y-R, Chu PG, **e G, Dong F, Jia W, Chang VHS, Yen Y (2020) Long-term proton pump inhibitor administration caused physiological and microbiota changes in rats. Sci Rep 10:866. https://doi.org/10.1038/s41598-020-57612-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, Mujagic Z, Vila AV, Falony G, Vieira-Silva S, Wang J, Imhann F, Brandsma E, Jankipersadsing SA, Joossens M, Cenit MC, Deelen P, Swertz MA, LifeLines cohort study, Weersma RK, Feskens EJM, Netea MG, Gevers D, Jonkers D, Franke L, Aulchenko YS, Huttenhower C, Raes J, Hofker MH, Xavier RJ, Wijmenga C, Fu J (2016) Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352:565–569. https://doi.org/10.1126/science.aad3369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ashida K, Sakurai Y, Hori T, Kudou K, Nishimura A, Hiramatsu N, Umegaki E, Iwakiri K (2016) Randomised clinical trial: vonoprazan, a novel potassium-competitive acid blocker, vs. lansoprazole for the healing of erosive oesophagitis. Aliment Pharmacol Ther 43:240–251. https://doi.org/10.1111/apt.13461

    Article  CAS  PubMed  Google Scholar 

  29. Hori Y, Imanishi A, Matsukawa J, Tsukimi Y, Nishida H, Arikawa Y, Hirase K, Ka**o M, Inatomi N (2010) 1-[5-(2-Fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1 H -pyrrol-3-yl]- N-methylmethanamine Monofumarate (TAK-438), a novel and potent potassium-competitive acid blocker for the treatment of acid-related diseases. J Pharmacol Exp Ther 335:231–238. https://doi.org/10.1124/jpet.110.170274

    Article  CAS  PubMed  Google Scholar 

  30. Kim B-R, Shin J, Guevarra RB, Lee JH, Kim DW, Seol K-H, Lee J-H, Kim HB, Isaacson RE (2017) Deciphering diversity indices for a better understanding of microbial communities. J Microbiol Biotechnol 27:2089–2093. https://doi.org/10.4014/jmb.1709.09027

    Article  PubMed  Google Scholar 

  31. Hu Y, Xu X, Ouyang Y, He C, Li N, **e C, Peng C, Zhu Z, **e Y, Shu X, Lu N, Zhu Y (2022) Analysis of oral microbiota alterations induced by Helicobacter pylori infection and vonoprazan-amoxicillin dual therapy for Helicobacter pylori eradication. Helicobacter. https://doi.org/10.1111/hel.12923

    Article  PubMed  PubMed Central  Google Scholar 

  32. Suzuki S, Gotoda T, Takano C, Horii T, Sugita T, Ogura K, Ichijima R, Kusano C, Ikehara H (2021) Long term impact of vonoprazan-based Helicobacter pylori treatment on gut microbiota and its relation to post-treatment body weight changes. Helicobacter. https://doi.org/10.1111/hel.12851

    Article  PubMed  Google Scholar 

  33. Kakiuchi T, Yamamoto K, Imamura I, Hashiguchi K, Kawakubo H, Yamaguchi D, Fujioka Y, Okuda M (2021) Gut microbiota changes related to Helicobacter pylori eradication with vonoprazan containing triple therapy among adolescents: a prospective multicenter study. Sci Rep 11:755. https://doi.org/10.1038/s41598-020-80802-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang M, Yang X-J (2016) Effects of a high fat diet on intestinal microbiota and gastrointestinal diseases. WJG 22:8905. https://doi.org/10.3748/wjg.v22.i40.8905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Horii T, Suzuki S, Takano C, Shibuya H, Ichijima R, Kusano C, Ikehara H, Gotoda T (2021) Lower impact of vonoprazan–amoxicillin dual therapy on gut microbiota for Helicobacter pylori eradication. J Gastro Hepatol 36:3314–3321. https://doi.org/10.1111/jgh.15572

    Article  CAS  Google Scholar 

  36. Cornejo-Pareja I, Martín-Núñez G, Roca-Rodríguez M, Cardona F, Coin-Aragüez L, Sánchez-Alcoholado L, Gutiérrez-Repiso C, Muñoz-Garach A, Fernández-García J, Moreno-Indias I, Tinahones F (2019) H. pylori eradication treatment alters gut microbiota and GLP-1 secretion in humans. JCM 8:451. https://doi.org/10.3390/jcm8040451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Scheperjans F, Aho V, Pereira PAB, Koskinen K, Paulin L, Pekkonen E, Haapaniemi E, Kaakkola S, Eerola-Rautio J, Pohja M, Kinnunen E, Murros K, Auvinen P (2015) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30:350–358. https://doi.org/10.1002/mds.26069

    Article  PubMed  Google Scholar 

  38. Sanada K, Nakajima S, Kurokawa S, Barceló-Soler A, Ikuse D, Hirata A, Yoshizawa A, Tomizawa Y, Salas-Valero M, Noda Y, Mimura M, Iwanami A, Kishimoto T (2020) Gut microbiota and major depressive disorder: A systematic review and meta-analysis. J Affect Disord 266:1–13. https://doi.org/10.1016/j.jad.2020.01.102

    Article  CAS  PubMed  Google Scholar 

  39. Barandouzi ZA, Starkweather AR, Henderson WA, Gyamfi A, Cong XS (2020) Altered Composition of gut microbiota in depression: a systematic review. Front Psychiatry 11:541. https://doi.org/10.3389/fpsyt.2020.00541

    Article  PubMed  PubMed Central  Google Scholar 

  40. Reeves AE, Theriot CM, Bergin IL, Huffnagle GB, Schloss PD, Young VB (2011) The interplay between microbiome dynamics and pathogen dynamics in a murine model of Clostridium difficile Infection. Gut Microbes 2:145–158. https://doi.org/10.4161/gmic.2.3.16333

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was internally funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haythem Najah.

Ethics declarations

Disclosures

Dr. Rasa Zarnegar works as a consultant for Bard (BD). Drs. Haythem Najah, Rodrigo C.L. Edelmuth, Maria Cristina Riascos, Alex Grier, Hala Al Asadi, Jacques A. Greenberg, Ileana Miranda, Carl V. Crawford, Brendan M. Finnerty, and Thomas J. Fahey III have no conflicts of interest or financial ties to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najah, H., Edelmuth, R.C.L., Riascos, M.C. et al. Long-term potassium-competitive acid blockers administration causes microbiota changes in rats. Surg Endosc 37, 7980–7990 (2023). https://doi.org/10.1007/s00464-023-10269-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-023-10269-6

Keywords

Navigation