Log in

Side-to-side duodeno-ileal magnetic compression anastomosis: design and feasibility of a novel device in a porcine model

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Minimally invasive metabolic/bariatric surgery (MBS) may be further advanced by magnetic compression anastomosis (MCA) technology. The study aimed to develop a magnet sized to create a patent duodeno-ileostomy (DI) and verify its effectiveness in a porcine model.

Methods

Developmental study phase: magnets with 4 different flange-offset dimensions were tested to identify a design that would successfully form a compression anastomosis. Verification phase: evaluation of the selected design’s efficacy. In each 6-week phase (4 pigs/phase), one magnet was inserted laparoscopically in the jejunum, one placed gastroscopically in the duodenum. Magnets were aligned, gradually fused, formed an anastomosis, and then detached and were expelled. At necropsy, MCA sites and sutured enterotomy sites were collected and compared.

Results

Developmental phase: the linear BC42 magnet with a 2.3-mm flange offset design was selected. Verification phase: in 4 swine magnets were mated at the target location, confirmed radiographically. Mean time to magnet detachment 16.0 days (12–22), to expulsion 24.5 days (17–33). MCA was achieved in all animals at time of sacrifice. Animals gained a mean 9.5 kg (3.9–11.8). Specimens revealed patent anastomoses of ≥ 20 mm with smooth mucosa and minimal inflammation and fibrosis compared to sutured enterotomies. One pig underwent corrective surgery for a mesenteric hernia without sequelae.

Conclusion

In a large-animal model, gross and histopathologic examination confirmed that the linear MCA device created a patent, well-vascularized, duodeno-ileal anastomosis. The novel MCA device may be appropriate for use in human MBS procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kirwan JP, Courcoulas AP, Cummings DE, Goldfine AB, Kashyap SR, Simonson DC et al (2022) Diabetes remission in the Alliance of Randomized Trials of Medicine Versus Metabolic Surgery in Type 2 Diabetes (ARMMS-T2D). Diabetes Care 45(7):1574–1583

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sarwer DB, Gasoyan H, Bauerle Bass S, Spitzer JC, Soans R, Rubin DJ (2021) Role of weight bias and patient-physician communication in the underutilization of bariatric surgery. Surg Obes Relat Dis 17(11):1926–1932

    Article  PubMed  PubMed Central  Google Scholar 

  3. Amat C (1895) Appareils a sutures: les viroles de denans; les points de Bonnier; les boutons de Murphy. Arch Med Pharmacie Militaires Paris 25:273–285

    Google Scholar 

  4. Murphy JB (1892) Cholecysto-intestinal, gastro-intestinal, entero-intestinal anastomosis, and approximation without sutures. Med Rec N Y 42:665–676

    Google Scholar 

  5. Mayo WJ, Mayo CH (1895) Clinical report—I: Complete section of the vas deferens, end-to-end union; II: acute suppuration of knee-joint: open treatment; III: gastro-enterostomy by the murphy button: anastomoses by this method. Ann Surg 21(1):35–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stewart D, Hunt S, Pierce R, Dongli M, Frisella M, Cook K et al (2007) Validation of the NITI endoluminal compression anastomosis ring (EndoCAR) device and comparison to the traditional circular stapled colorectal anastomosis in a porcine model. Surg Innov 14(4):252–260

    Article  PubMed  Google Scholar 

  7. Tucker ON, Beglaibter N, Rosenthal RJ (2008) Compression anastomosis for Roux-en-Y gastric bypass: observations in a large animal model. Surg Obes Relat Dis 4(2):115–121

    Article  CAS  PubMed  Google Scholar 

  8. Gagner M, Heppell J, Lamarre L, Carioto S (1993) L’anastomose colique par laparoscopie avec l’anneau biodégradable valtrac: Une étude comparative dans un modèle canin. Ann Chir 46(9):875

    Google Scholar 

  9. Kanshin NN, Lytkin MI, Knysh VI, lu Klur V, Khamidov AI, (1984) First experience with application of compression anastomoses with the apparatus AKA-2 in operations on the large intestine. Vestn Khir Im I I Grek 132:52–57

    CAS  PubMed  Google Scholar 

  10. Hardy TG, Aguilar PS, Stewart WR, Katz AR, Maney JW, Costanzo JT et al (1987) Initial clinical experience with a biofragmentable ring for sutureless bowel anastomosis. Dis Colon Rectum 30(1):55–61

    Article  PubMed  Google Scholar 

  11. Rebuffat C, Rosati R, Montorsi M, Fumagalli U, Maciocco M, Poccobelli M et al (1990) Clinical application of a new compression anastomotic device for colorectal surgery. Am J Surg 159:330–335

    Article  CAS  PubMed  Google Scholar 

  12. Bubrick MP, Corman ML, Cahill CJ, Hardy TG, Nance FC, Shatney CH (1991) Prospective, randomized trial of the biofragmentable anastomosis ring. Invest Group Am J Surg 161:136–142

    CAS  Google Scholar 

  13. Cossu ML, Coppola M, Fais E, Ruggiu M, Spartà C, Profili S et al (2000) The use of the Valtrac ring in the upper and lower gastrointestinal tract, for single, double, and triple anastomoses: a report of 50 cases. Am Surg 66(8):759–762

    Article  CAS  PubMed  Google Scholar 

  14. Nudelman IL, Fuko V, Greif F, Lelchuk S (2002) Colonic anastomosis with the nickel-titanium temperature-dependent memory-shape device. Am J Surg 183:697–701

    Article  PubMed  Google Scholar 

  15. Lee JY, Woo JH, Choi HJ, Park KJ, Roh YH, Kim KH, Lee HY (2011) Early experience of the compression anastomosis ring (CAR™ 27) in left-sided colon resection. World J Gastroenterol 17(43):4787–4792

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ye F, Chen D, Wang D, Lin J, Zheng S (2014) Use of Valtrac™-secured intracolonic bypass in laparoscopic rectal cancer resection. Medicine (Baltimore) 93(29):e224

    Article  PubMed  Google Scholar 

  17. Bobkiewicz A, Studniarek A, Krokowicz L, Szmyt K, Borejsza-Wysocki M, Szmeja J et al (2017) Gastrointestinal tract anastomoses with the biofragmentable anastomosis ring: is it still a valid technique for bowel anastomosis? Analysis of 203 cases and review of the literature. Int J Colorectal Dis 32(1):107–111

    Article  PubMed  Google Scholar 

  18. Gagner M (2021) Laparoendoscopic magnetic gastrointestinal anastomosis. In: Gagner M (ed) Magnetic surgery. Springer Publisher, New York, pp 135–148

    Chapter  Google Scholar 

  19. Kaidar-Person O, Rosenthal RJ, Wexner SD, Szomstein S, Person B (2008) Compression anastomosis: history and clinical considerations. Am J Surg 195:818–826

    Article  PubMed  Google Scholar 

  20. Marrache MK, Itani MI, Farha J, Fayad L, Sharara SL, Kalloo AN et al (2021) Endoscopic gastrointestinal anastomosis: a review of established techniques. Gastrointest Endosc 93(1):34–46

    Article  PubMed  Google Scholar 

  21. Jamshidi R, Stephenson JT, Clay JG, Pichakron KO, Harrison MR (2009) Magnamosis: magnetic compression anastomosis with comparison to suture and staple techniques. J Pediatr Surg 44(1):222–228

    Article  PubMed  Google Scholar 

  22. Ryou M, Cantillon-Murphy P, Azagury D, Shaikh SN, Ha G, Greenwalt I et al (2011) Smart self-assembling magnets for endoscopy (SAMSEN) for transoral endoscopic creation of immediate gastrojejunostomy (with video). Gastrointest Endosc 73(2):353–359

    Article  PubMed  Google Scholar 

  23. Wall J, Diana M, Leroy J, Deruijter V, Gonzales KD, Lindner V et al (2013) MAGNAMOSIS IV: magnetic compression anastomosis for minimally invasive colorectal surgery. Endoscopy 45(8):643–648

    Article  CAS  PubMed  Google Scholar 

  24. Ryou M, Agoston AT, Thompson CC (2016) Endoscopic intestinal bypass creation by using self-assembling magnets in a porcine model. Gastrointest Endosc 83(4):821–825

    Article  PubMed  Google Scholar 

  25. Zhao G, Ma J, Yan X, Li J, Ma F, Wang H et al (2019) Optimized force range of magnetic compression anastomosis in dog intestinal tissue. J Pediatr Surg 54(10):2166–2171

    Article  PubMed  Google Scholar 

  26. Chen H, Ma T, Wang Y, Zhu HY, Feng Z, Wu RQ et al (2020) Fedora-type magnetic compression anastomosis device for intestinal anastomosis. World J Gastroenterol 26(42):6614–6625

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang M, Lyu X, Zhao G, An Y, Lyu Y, Yan X (2022) Establishment of Yan-Zhang’s staging of digestive tract magnetic compression anastomosis in a rat model. Sci Rep 12:12445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ore AS, Askenasy E, Ryou M, Baldwin T, Thompson CC, Messaris E (2022) Evaluation of sutureless anastomosis after ileostomy takedown using the self-forming magnet anastomosis system in a porcine model. Surg Endosc 36(10):7664–7672

    Article  PubMed  Google Scholar 

  29. Graves CE, Co C, Hsi RS, Kwiat D, Imamura-Ching J, Harrison MR, Stoller ML (2017) Magnetic compression anastomosis (magnamosis): first-in-human trial. J Am Coll Surg 225:676–681

    Article  PubMed  Google Scholar 

  30. Kamada T, Ohdaira H, Takeuchi H, Takahashi J, Ito E, Suzuki N et al (2021) (2021) New technique for magnetic compression anastomosis without incision for gastrointestinal obstruction. J Am Coll Surg 232(2):170-177.e2

    Article  PubMed  Google Scholar 

  31. van Hooft JE, Vleggaar FP, Le Moine O, Bizzotto A, Voermans RP, Costamagna G et al (2010) Endoscopic magnetic gastroenteric anastomosis for palliation of malignant gastric outlet obstruction: a prospective multicenter study. Gastrointest Endosc 72:530–535

    Article  PubMed  Google Scholar 

  32. Schlottmann F, Ryou M, Lautz D, Thompson CC, Buxhoeveden R (2021) Sutureless duodeno-ileal anastomosis with self-assembling magnets: safety and feasibility of a novel metabolic procedure. Obes Surg 31(9):4195–4202

    Article  PubMed  Google Scholar 

  33. Gagner M (2021) Introduction: ideas and people leading to successful products for patient care leading to magnetic surgery: Chapter 1. In: Gagner M (ed) magnetic surgery. Springer Publisher, New York, pp 1–6

    Chapter  Google Scholar 

  34. Gruenberger JM, Karcz-Socha I, Marjanovic G, Kuesters S, Zwirska-Korczala K, Schmidt K, Karcz WK (2014) Pylorus preserving duodeno-enterostomy with sleeve gastrectomy – preliminary results. BMC Surg 14:20–28

    Article  Google Scholar 

  35. National Academy of Sciences (2011) Guide for the care and use of laboratory animals, 8th edn. The National Academies Press, Washington

    Google Scholar 

  36. Gagner M (2009) Emerging techniques in bariatric surgery—laparoscopic duodeno-ileostomy. ACS-2771 Online video Library of the American College of Surgeons

  37. Gagner M (2015) Safety and efficacy of a side-to-side duodeno-ileal anastomosis for weight loss and type-2 diabetes: duodenal bipartition, a novel metabolic surgery procedure. Ann Surg Innov Res 14(9):6

    Article  Google Scholar 

  38. Edwards MA, Jones DB, Ellsmere J, Grinbaum R, Schneider BE (2007) Anastomotic leak following antecolic versus retrocolic laparoscopic Roux-en-Y gastric bypass for morbid obesity. Obes Surg 17:292–297

    Article  PubMed  Google Scholar 

  39. Lim R, Beekley A, Johnson DC, Davis KA (2018) Early and late complications of bariatric operation. Trauma Surg Acute Care Open 3(1):e000219

    Article  PubMed  PubMed Central  Google Scholar 

  40. Diaz R, Davalos G, Welsh LK, Portenier D, Guerron AD (2019) Use of magnets in gastrointestinal surgery. Surg Endosc 33(6):1721–1730

    Article  PubMed  Google Scholar 

  41. Qiao W, Shi A, Ma F, Yan X, Duan J, Wu R et al (2020) Further development of magnetic compression for gastrojejunostomy in rabbits. J Surg Res 245:249–256

    Article  CAS  PubMed  Google Scholar 

  42. Comeau E, Gagner M, Inabnet WB, Herron DM, Quinn TM, Pomp A (2005) Symptomatic internal hernias after laparoscopic bariatric surgery. Surg Endosc 19(1):34–39

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Charles River Laboratories staff for their excellent conduct of the veterinary study, in particular, Aurelia Spataru-Burgoci, Rosa Kaviani, and Joanna M. Rybicka.

Funding

This study was supported by a research grant from GT Metabolic Solutions (San Jose, CA). Michel Gagner is a consultant with stock options in GT Metabolic Solutions. Michel Gagner is also a consultant for Medtronic, Inc. and Lexington Medical, Inc. and has stock options in Lexington Medical, Inc. Todd Krinke is an employee with stock options in GT. Maxime LaPointe-Gagner is employed by Westmount Surgical Center and has no conflicts of interest or financial ties to pharmaceutical or device companies to disclose. Jane Buchwald is a GT consultant with GT stock options; she received grants from Ethicon, Inc., M.I.D., Society of Bariatric and Metabolic Surgeons of Kazakhstan, Medical Faculty of Mannheim, Holy Family Hospital, Israel, and the American College of Surgeons.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Gagner.

Ethics declarations

Ethical approval

All procedures of the study were conducted in compliance with the protocol and the standard operating procedures and institutional review board of the testing facility, Charles River Laboratories (Boisbriand, Quebec, Canada).

Human and animal rights

The study was performed in accord with the ethical standards of the animal testing facility’s Institutional Animal Care and Use Committee (IACUC) to ensure compliance with the Canadian Council on Animal Care regulations and National Academies of Science Guide for Care and Use of Laboratory Animals. No written consent was needed for an animal study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gagner, M., Krinke, T., Lapointe-Gagner, M. et al. Side-to-side duodeno-ileal magnetic compression anastomosis: design and feasibility of a novel device in a porcine model. Surg Endosc 37, 6197–6207 (2023). https://doi.org/10.1007/s00464-023-10105-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-023-10105-x

Keywords

Navigation