Log in

Reconstructing Planar Ellipses from Translation-Invariant Minkowski Tensors of Rank Two

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Minkowski tensors contain information about shape and orientation of the underlying convex body. We make this precise by showing that reconstructing a centered ellipse in two-dimensional Euclidean space from its rank-2 surface tensor is a well-posed inverse problem. It turns out that this result can be restated equivalently with other geometric tomography data derived from the support function of the ellipse, such as the first three non-trivial Fourier coefficients. We present explicit reconstruction algorithms for all three types of input. The relevance of these findings is illustrated in an application to stationary particle processes. We define and discuss two shape ellipses, each containing information about the mean shape and orientation of the typical particle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alesker, S.: Description of continuous isometry covariant valuations on convex sets. Geom. Dedicata 74(3), 241–248 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and Its Applications, vol. 71. Cambridge University Press, Cambridge (1999)

  3. Beisbart, C., Dahlke, R., Mecke, K., Wagner, H.: Vector- and tensor-valued descriptors for spatial patterns. In: Morphology of Condensed Matter (Wuppertal 2001). Lecture Notes in Physics, vol. 600, pp. 238–260. Springer, Heidelberg (2002)

  4. Cvijović, D.: The Fourier series expansions of the Legendre incomplete elliptic integrals of the first and second kind. Integral Transforms Spec. Funct. 21(3), 235–242 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Erikson, R., Kiderlen, M.: Mean surface and volume particle tensors under \(L\)-restricted isotropy and associated ellipsoids. Adv. Geom. (2023, to appear)

  6. Gardner, R.J.: Geometric Tomography. Encyclopedia of Mathematics and Its Applications, vol. 58. Cambridge University Press, New York (2006)

  7. Glasauer, S.: A generalization of intersection formulae of integral geometry. Geom. Dedicata 68(1), 101–121 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Goodey, P., Weil, W.: Centrally symmetric convex bodies and the spherical Radon transform. J. Differ. Geom. 35(3), 675–688 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Elsevier/Academic Press, Amsterdam (2007)

    MATH  Google Scholar 

  10. Groemer, H.: Geometric Applications of Fourier Series and Spherical Harmonics. Encyclopedia of Mathematics and Its Applications, vol. 61. Cambridge University Press, Cambridge (1996)

  11. Hadwiger, H.: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer, Berlin (1957)

  12. Kousholt, A.: Reconstruction of \(n\)-dimensional convex bodies from surface tensors. Adv. Appl. Math. 83, 115–144 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kousholt, A., Kiderlen, M.: Reconstruction of convex bodies from surface tensors. Adv. Appl. Math. 76, 1–33 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kousholt, A., Schulte, J.: Reconstruction of convex bodies from moments. Discrete Comput. Geom. 65(1), 1–42 (2021)

  15. Mardia, K.V., Jupp, P.E.: Directional Statistics. Wiley Series in Probability and Statistics. Wiley, Chichester (2000)

  16. McKilliam, R.G., Quinn, B.G., Clarkson, I.V.L.: Direction estimation by minimum squared arc length. IEEE Trans. Signal Process. 60(5), 2115–2124 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Miles, R.E.: The sampling, by quadrats, of planar aggregates. J. Microscopy 113(3), 257–267 (1978)

    Article  MathSciNet  Google Scholar 

  18. Molchanov, I.: Theory of Random Sets. Probability and Its Applications (New York). Springer, London (2005)

  19. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory. Encyclopedia of Mathematics and Its Applications, vol. 151, 2nd edn. Cambridge University Press, Cambridge (2014)

  20. Schneider, R., Schuster, R.: Particle orientation from section stereology. Rend. Circ. Mat. Palermo Suppl. 77, 623–633 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Schneider, R., Weil, W.: Stochastic and Integral Geometry. Probability and Its Applications (New York). Springer, Berlin (2008)

  22. Schröder-Turk, G.E., Kapfer, S., Breidenbach, B., Beisbart, C., Mecke, K.: Tensorial Minkowski functionals and anisotropy measures for planar patterns. J. Microscopy 238(1), 57–74 (2010)

    Article  MathSciNet  Google Scholar 

  23. Schröder-Turk, G.E., Mickel, W., Kapfer, S.C., Klatt, M.A., Schaller, F.M., Hoffmann, M.J.F., Kleppmann, N., Armstrong, P., Inayat, A., Hug, D., Reichelsdorfer, M., Peukert, W., Schwieger, W., Mecke, K.: Minkowski tensor shape analysis of cellular, granular and porous structures. Adv. Mater. 23(22–23), 2535–2553 (2011)

  24. Sun, D., Sun, J.: Strong semismoothness of eigenvalues of symmetric matrices and its application to inverse eigenvalue problems. SIAM J. Numer. Anal. 40(6), 2352–2367 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Vedel Jensen, E.B., Ziegel, J.F.: Local stereology of tensors of convex bodies. Methodol. Comput. Appl. Probab. 16(2), 263–282 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Waldmann, S.: Topology. An Introduction. Springer, Cham (2014)

  27. Weil, W.: On the mean shape of particle processes. Adv. Appl. Probab. 29(4), 890–908 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ziegel, J.F., Nyengaard, J.R., Vedel Jensen, E.B.: Estimating particle shape and orientation using volume tensors. Scand. J. Stat. 42(3), 813–831 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was partially supported by Centre for Stochastic Geometry and Advanced Bioimaging, funded by the Villum Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Kiderlen.

Additional information

Editor in Charge: Csaba D. Tóth

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eriksen, R., Kiderlen, M. Reconstructing Planar Ellipses from Translation-Invariant Minkowski Tensors of Rank Two. Discrete Comput Geom 69, 1095–1120 (2023). https://doi.org/10.1007/s00454-022-00470-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-022-00470-0

Keywords

Mathematics Subject Classification

Navigation