Log in

A Review of Fucoxanthin Biomanufacturing from Phaeodactylum tricornutum

  • Critical Review
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Microalgae, compared to macroalgae, exhibit advantages such as rapid growth rates, feasible large-scale cultivation, and high fucoxanthin content. Among these microalgae, Phaeodactylum tricornutum emerges as an optimal source for fucoxanthin production. This paper comprehensively reviews the research progress on fucoxanthin production using Phaeodactylum tricornutum from 2012 to 2022, offering detailed insights into various aspects, including strain selection, media optimization, nutritional requirements, lighting conditions, cell harvesting techniques, extraction solvents, extraction methodologies, as well as downstream separation and purification processes. Additionally, an economic analysis is performed to assess the costs of fucoxanthin production from Phaeodactylum tricornutum, with a comparative perspective to astaxanthin production from Haematococcus pluvialis. Lastly, this paper discusses the current challenges and future opportunities in this research field, serving as a valuable resource for researchers, producers, and industry managers seeking to further advance this domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article materials.

Abbreviations

Fx:

Fucoxanthin

PBRs:

Photobioreactors

EPA:

Eicosapentaenoic Acid

FCPs:

Forms FCP complexes

EMS:

Ethyl methanesulfonate

NTG:

N-methyl-nitroso-nitrosoguanidine

LYCB:

Lycopene-β-cyclase

DXS:

1-Deoxy-D-xylulose 5-phosphate synthase

PSY:

Phytoene Synthase

VDL:

Violaxanthin de-epoxidase-like

LPH:

Laminaria japonica hydrolysate

PS II:

Photosystem II

SNP:

Sodium nitroferricyanide

GO:

Glycolate oxidase

TAG:

Triacylglycerols

PLE:

Pressurized liquid extraction

UAE:

Ultrasonic-assisted extraction

DCM:

Dichloromethane

THF:

Tetrahydrofuran

MAE:

Microwave-assisted extraction

EAE:

Enzyme-assisted extraction

ScCO2 :

Supercritical Carbon Dioxide Extraction

UFAs:

Fatty acids

HPLC:

High-performance liquid chromatography

References

  1. Loureno-Lopes C, Garcia-Oliveira P, Carpena M et al (2020) Scientific Approaches on Extraction, Purification and Stability for the Commercialization of Fucoxanthin Recovered from Brown Algae[J]. Foods 9(8):1113. https://doi.org/10.3390/foods9081113

    Article  CAS  Google Scholar 

  2. Wang W, Yu LJ, Xu C et al (2019) Structural basis for blue-green light harvesting and energy dissipation in diatoms[J]. Science 363(6427):598–598. https://doi.org/10.1126/science.aav0365

    Article  CAS  Google Scholar 

  3. Wang S, Wu S, Yang G et al (2021) A review on the progress, challenges and prospects in commercializing microalgal fucoxanthin[J]. Biotechnol Adv 53:107865. https://doi.org/10.1016/j.biotechadv.2021.107865

    Article  CAS  PubMed  Google Scholar 

  4. Manning SR (2022) Microalgal lipids: biochemistry and biotechnology[J]. Curr Opin Biotechnol 74:1–7. https://doi.org/10.1016/j.copbio.2021.10.018

    Article  CAS  PubMed  Google Scholar 

  5. Harald K (1913) Zur Biochemie der Meeresalgen[J]. Biol Chem 83(3):171–197. https://doi.org/10.1515/bchm2.1913.83.3.171

    Article  Google Scholar 

  6. Willstätter R, Page HJ. Untersuchungen über Chlorophyll. XXIV. Über die Pigmente der Braunalgen[M], Justus Liebig's Annalen der Chemie, 1914, 404(3): 237–271. https://doi.org/10.1002/jlac.19144040302

  7. Haugan JA, Aakermann T, Liaaen-Jensen S (1992) Isolation of fucoxanthin and peridinin[J]. Methods Enzymol 213:231–245. https://doi.org/10.1016/0076-6879(92)13124-G

    Article  CAS  Google Scholar 

  8. Suhuang W. Isolation, identification and biological functions of fucoxanthin stereoisomers from Saccharina japonica[D]. University of Chinese Academy of Sciences, 2019. https://kns.cnki.net/kcms2/article/abstract?v=1aGKlzgJW-rqXxGmxc5We2clwNo6wU4zef5tSV1k-kIYNf9vgR_jRD3U_SzHO0mHi2VQfLIjU-cICvQodPcOHyUteubdPmNwpx__IEi3674TLH80btCRnPbfAcVemqQDg_Leo5ykSeQ=&uniplatform=NZKPT&language=CHS

  9. Omar AR (2021) The Critical Studies of Fucoxanthin Research Trends from 1928 to June 2021: A Bibliometric Review[J]. Mar Drugs 19(11):1–25. https://doi.org/10.3390/md19110606

    Article  Google Scholar 

  10. Honda M, Murakami K, Takasu S et al (2022) Extraction of Fucoxanthin Isomers from the Edible Brown Seaweed Undaria pinnatifida Using Supercritical CO2: Effects of Extraction Conditions on Isomerization and Recovery of Fucoxanthin[J]. J Oleo Sci 71(8):1097–1106. https://doi.org/10.5650/jos.ess22077

    Article  CAS  PubMed  Google Scholar 

  11. Ye Y, Sun J, Wang L, et al. Isolation and Purification of Fucoxanthin from Brown Seaweed Sargassum horneri Using Open ODS Column Chromatography and Ethanol Precipitation[J]. Molecules, 2021(13). https://doi.org/10.3390/molecules26133777

  12. Kim SM, Jung YJ, Kwon ON et al (2012) A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum[J]. Appl Biochem Biotechnol 166(7):1843–1855. https://doi.org/10.1007/s12010-012-9602-2

    Article  CAS  PubMed  Google Scholar 

  13. Saniye A L, Lter I L, Ko M, et al. Effects of Extraction Methods and Conditions on Bioactive Compounds Extracted from Phaeodactylum tricornutum[J]. Acta Chimica Slovenica, 2020, 67(4):1250–1261. https://doi.org/10.17344/acsi.2020.6157

  14. Derwenskus F, Weickert S, Lewandowski I, et al. Economic evaluation of up- and downstream scenarios for the co-production of fucoxanthin and eicosapentaenoic acid with P. tricornutum using flat-panel airlift photobioreactors with artificial light[J]. Algal Research, 51.2020. https://doi.org/10.1016/j.algal.2020.102078

  15. Gao F, Sá M, Itd ITC et al (2020) Production and monitoring of biomass and fucoxanthin with brown microalgae under outdoor conditions[J]. Biotechnol Bioeng. https://doi.org/10.1002/bit.27657

    Article  PubMed  PubMed Central  Google Scholar 

  16. Seth K, Kumar A, Rastogi RP et al (2021) Bioprospecting of fucoxanthin from diatoms-Challenges and perspectives[J]. Algal Res 60:102475. https://doi.org/10.1016/j.algal.2021.102475

    Article  Google Scholar 

  17. Cen SY, Li DW, Huang XL et al (2022) Crucial carotenogenic genes elevate hyperaccumulation of both fucoxanthin and β-carotene in Phaeodactylum tricornutum[J]. Algal Res 64:102691. https://doi.org/10.1016/j.algal.2022.102691

    Article  Google Scholar 

  18. Takashi K, Nozomu K, Kengo S et al (2015) Effect of an Introduced Phytoene Synthase Gene Expression on Carotenoid Biosynthesis in the Marine Diatom Phaeodactylum tricornutum[J]. Mar Drugs 13(8):5334–5357. https://doi.org/10.3390/md13085334

    Article  CAS  Google Scholar 

  19. McClure DD, Luiz A, Gerber B, Barton GW, Kavanagh JM (2018) An investigation into the effect of culture conditions on fucoxanthin production using the marine microalgae Phaeodactylum tricornutum[J]. Algal Res 29:41–48. https://doi.org/10.1016/j.algal.2017.11.015

    Article  Google Scholar 

  20. Wang ZP, Wang PK, Ma Y, et al. Laminaria japonica hydrolysate promotes fucoxanthin accumulation in Phaeodactylum tricornutum[J]. Bioresource Technology, 2021, 344. https://doi.org/10.1016/j.biortech.2021.126117

  21. Runqing Y, Wei D. Improving Fucoxanthin Production in Mixotrophic Culture of Marine Diatom Phaeodactylum tricornutum by LED Light Shift and Nitrogen Supplementation[J]. Frontiers in Bioengineering and Biotechnology 8(2020). https://doi.org/10.3389/fbioe.2020.00820

  22. Sun J, Zhou C, Cheng P et al (2022) A simple and efficient strategy for fucoxanthin extraction from the microalga Phaeodactylum tricornutum[J]. Algal Res 61:102610. https://doi.org/10.1016/j.algal.2021.102610

    Article  Google Scholar 

  23. Wu Z, Qiu S, Abbew AW et al (2022) Evaluation of nitrogen source, concentration and feeding mode for co-production of fucoxanthin and fatty acids in Phaeodactylum tricornutum[J]. Algal Res 63:102655. https://doi.org/10.1016/j.algal.2022.102655

    Article  Google Scholar 

  24. Wang H, Zhang Y, Chen L et al (2018) Combined production of fucoxanthin and EPA from two diatom strains Phaeodactylum tricornutum and Cylindrotheca fusiformis cultures[J]. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-018-1935-y

    Article  PubMed  PubMed Central  Google Scholar 

  25. Butler T, Padmaperuma G, Lizzul A et al (2022) Towards a Phaeodactylum tricornutum biorefinery in an outdoor UK environment[J]. Biores Technol 344(Pt B):126320. https://doi.org/10.1016/j.biortech.2021.126320

    Article  CAS  Google Scholar 

  26. Branco-Vieira M, Martin SS, Agurto C, et al. Biotechnological potential of Phaeodactylum tricornutum for biorefinery processes - ScienceDirect[J]. 2020, 268. https://doi.org/10.1016/j.fuel.2020.117357

  27. Wang S, Said IH, Thorstenson C et al (2018) Pilot-scale production of antibacterial substances by the marine diatom Phaeodactylum tricornutum Bohlin[J]. Algal Res 32:113–120. https://doi.org/10.1016/j.algal.2018.03.014

    Article  Google Scholar 

  28. Baoyan G, Ailing C, Wenyuan Z et al (2017) Co-Production of Lipids, Eicosapentaenoic Acid, Fucoxanthin, and Chrysolaminarin by Phaeodactylum tricornutum Cultured in a Flat-Plate Photobioreactor Under Varying Nitrogen Conditions[J]. Journal of Ocean University of China. https://doi.org/10.1007/s11802-017-3174-2

    Article  Google Scholar 

  29. Delbrut A, Albina P,Théo Lapierre, et al. Fucoxanthin and Polyunsaturated Fatty Acids Co-Extraction by a Green Process[J]. Molecules, 2018, 23(4). 874. https://doi.org/10.3390/molecules23040874

  30. Gómez-Loredo A, Benavides J, Rito-Palomares M (2016) Growth kinetics and fucoxanthin production of Phaeodactylum tricornutum and Isochrysis galbana cultures at different light and agitation conditions[J]. J Appl Phycol 28(2):849–860. https://doi.org/10.1007/s10811-015-0635-0

    Article  CAS  Google Scholar 

  31. Zhiqian Y, Maonian X, Manuela M et al (2015) Photo-Oxidative Stress-Driven Mutagenesis and Adaptive Evolution on the Marine Diatom Phaeodactylum tricornutum for Enhanced Carotenoid Accumulation[J]. Mar Drugs 13(10):6138–6151. https://doi.org/10.3390/md13106138

    Article  CAS  Google Scholar 

  32. Aslanbay Guler B, Deniz I, Demirel Z et al (2019) Comparison of different photobioreactor configurations and empirical computational fluid dynamics simulation for fucoxanthin production[J]. Algal Res 37:195–204. https://doi.org/10.1016/j.algal.2018.11.019

    Article  Google Scholar 

  33. Petrushkina M, Gusev E, Sorokin B et al (2017) Fucoxanthin production by heterokont microalgae[J]. Algal Res 24:387–393. https://doi.org/10.1016/j.algal.2017.03.016

    Article  Google Scholar 

  34. Hualian WU, Tao LI, Guanghua W et al (2016) A comparative analysis of fatty acid composition and fucoxanthin content in six Phaeodactylum tricornutum strains from diff erent origins[J]. Chin J Oceanol Limnol 34:391–398. https://doi.org/10.1007/s00343-015-4325-1

    Article  CAS  Google Scholar 

  35. Guler AB, Deniz I, Demirel Z, Suphi SO, Imamoglu E (2019) Transition from start-up to scale-up for fucoxanthin production in flat plate photobioreactor[J]. J Appl Phycol 31(3):1525–1533. https://doi.org/10.1007/s10811-018-1696-7

    Article  CAS  Google Scholar 

  36. Zhao P, Zang Z, **e X et al (2014) The influence of different flocculants on the physiological activity and fucoxanthin production of Phaeodactylum tricornutum[J]. Process Biochem 49(4):681–687. https://doi.org/10.1016/j.procbio.2014.01.007

    Article  CAS  Google Scholar 

  37. Yuan X, Liang L, Liu K et al (2020) Spent yeast as an efficient medium supplement for fucoxanthin and eicosapentaenoic acid (EPA) production by Phaeodactylum tricornutum[J]. J Appl Phycol 1:59–69. https://doi.org/10.1007/s10811-019-01909-3

    Article  CAS  Google Scholar 

  38. Hugo P, Marta S, Inês M, et al. Fucoxanthin production from Tisochrysis lutea and Phaeodactylum tricornutum at industrial scale[J]. Algal Research, 2021, 56. https://doi.org/10.1016/j.algal.2021.102322

  39. Azimatun NMM, Muizelaar W, Boelen P et al (2018) Environmental and nutrient conditions influence fucoxanthin productivity of the marine diatom Phaeodactylum tricornutum grown on palm oil mill effluent[J]. J Appl Phycol 31:111–122. https://doi.org/10.1007/s10811-018-1563-6

    Article  CAS  Google Scholar 

  40. Eilers U, Bikoulis A, Breitenbach, Jürgen, et al. Limitations in the biosynthesis of fucoxanthin as targets for genetic engineering in Phaeodactylum tricornutum[J]. Journal of Applied Phycology, 2016, 28(1):123–129. https://doi.org/10.1007/s10811-015-0583-8

  41. Sánchez-Camargo PA, Pleite N, Herrero M et al (2017) New approaches for the selective extraction of bioactive compounds employing bio-based solvents and pressurized green processes[J]. Journal of Supercritical Fluids The 128:112–120. https://doi.org/10.1016/j.supflu.2017.05.016

    Article  CAS  Google Scholar 

  42. Derwenskus F, Schfer B,Jan Müller, et al. Coproduction of EPA and Fucoxanthin with P. tricornutum - A Promising Approach for Upand Downstream Processing[J]. Chemie Ingenieur Technik, 2020, 92(11): 1780–1789. https://doi.org/10.1002/cite.202000046

  43. Zhang W, Wang F, Gao B et al (2018) An integrated biorefinery process: Stepwise extraction of fucoxanthin, eicosapentaenoic acid and chrysolaminarin from the same Phaeodactylum tricornutum biomass[J]. Algal Res 32:193–200. https://doi.org/10.1016/j.algal.2018.04.002

    Article  Google Scholar 

  44. Gilbert-Lopez B, Barranco A, Herrero M, et al. Development of new green processes for the recovery of bioactives from Phaeodactylum tricornutum[J]. Food Research International, 2016, 99(pt.3):1056–1065. https://doi.org/10.1016/j.foodres.2016.04.022

  45. Yi Z, Su Y, Xu M et al (2018) Chemical Mutagenesis and Fluorescence-Based High-Throughput Screening for Enhanced Accumulation of Carotenoids in a Model Marine Diatom Phaeodactylum tricornutum[J]. Mar Drugs 16(8):272. https://doi.org/10.3390/md16080272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Derwenskus F, Metz F, Gille A et al (2019) Pressurized extraction of unsaturated fatty acids and carotenoids from wet Chlorella vulgaris and Phaeodactylum tricornutum biomass using subcritical liquids[J]. GCB Bioenergy 11(1):335–344. https://doi.org/10.1111/gcbb.12563

    Article  CAS  Google Scholar 

  47. Song Z, Lye GJ, Parker BM (2020) Morphological and biochemical changes in Phaeodactylum tricornutum triggered by culture media: Implications for industrial exploitation[J]. Algal Res 47:101822. https://doi.org/10.1016/j.algal.2020.101822

    Article  Google Scholar 

  48. Tian M. Effects of temperature and light intensity on theaccumulation of five kinds of marine unicellular algaegrowth and carotenoid substances[D]. Ocean University of China, 2015. https://kns.cnki.net/kcms2/article/abstract?v=1aGKlzgJW-ozYNNYc7MTQD9aUO_kEwF6Bfx6yDxc01W2E2ui0burVQscbdZJs6E8R0uIey5yfRJxfsupyHzBgTVG0mwT20lohHa4NOc6vn3uZArbVNXMCYf47GbZte3L7nLX3yH8XWA=&uniplatform=NZKPT&language=CHS

  49. Defei Z, Runqing Y, Peiqin S et al (2021) Effect of Light and Fed-batch Operation on Growth of Phaeodactylum tricornutum and Its Fucoxanthin Accumulation in Indoor Tubular Photobioreactor[J]. Journal of Guangdong Ocean University 041(002):18–26. https://doi.org/10.3969/j.issn.1673-9159.2021.02.003

    Article  Google Scholar 

  50. Xun RJ, Gong YF, Wei FJ (2020) Correlation Analysis of Photosynthetic Physiological Indices and Content of Fucooxanthin in Phaeodactylum tricornutum Under Different Light Quality Conditions[J]. Chin J Lasers 47(5):462–470

    Google Scholar 

  51. Peiqin S, Lu L, Dong W et al (2018) Scaling-up Cultivation of Phaeodactylum tricornutum in Open Raceway Pond and Optimization of the Culture Conditions for Fucoxanthin Accumulation[J]. Modern Food Science and Technology 34(4):10

    Google Scholar 

  52. Wenyuan Z, Baoyan G, Aifen L et al (2016) Effects of different culture conditions on growth and accumulation of bioactive compounds by Phaeodactylum tricornutum[J]. Mar Sci 040(005):57–65

    Google Scholar 

  53. Shan W, Runqing Y, Peiqin S et al (2021) Improving Production of Biomass and Fucoxanthin in Mixotrophic Phaeodactylum tricomutum by Optimization of Carbon and Nitrogen Sources[J]. Journal of Food Science and Biotechnology 40(10):82–90. https://doi.org/10.3969/j.issn.1673-1689.2021.10.011

    Article  Google Scholar 

  54. Shuaiqi Z, Yifu G, Hao L, et al. A method for increasing fucoxanthin in Phaeodactyla triangulata with arachidonic acid: CN104531601A[P]. 2015.04.22. https://cprs.patentstar.com.cn/Search/Detail?ANE=9GCB9HIG8HAA9AHC2BAA5CDA9EACBGIA5ACA9EDE9GCD9GFF

  55. Shuaiqi Z, Yifu G, Hao L, et al. A method for increasing fucoxanthin content of Phaeodactyla triangulata with acetylsalicylic acid: CN104531603A[P]. 2015.04.22. https://cprs.patentstar.com.cn/Search/Detail?ANE=9EGD9FGC1AAA9FEE6FAA7AHA9CFF9HFH9EDB7BAA8EAAAFHA

  56. Shenrui L, Yifu G, Qingshu F, et al. A method for increasing fucoxanthin content of Phaeodactyla triangulata with photosynthetic enhancer: CN111411069A[P]. 2020.07.14. https://cprs.patentstar.com.cn/Search/Detail?ANE=9HBB9HIG6EAA9HIG8HAA9IGF8FBA9CCE9BGC9DHE9IDG4EAA

  57. Fan Yong, Li Fuli, Hu Guangrong, et al. The invention relates to a co-trophic culture method for producing polyunsaturated fatty acids and fucoxanthin from Phaeodactylum tricornutum:CN108342420A[P]. 2018.07.31. https://cprs.patentstar.com.cn/Search/ResultList?CurrentQuery=5LiA56eN55So5LmZ6YWw5rC05p2o6YW45o+Q6auY5LiJ6KeS6KSQ5oyH6Je75bKp6Je76buE57Sg5ZCr6YeP55qE5pa55rOVL1lZ&type=cn

  58. Wei Dong, Yang Ze**ong, Yang RunQing. The invention discloses a method for simultaneously increasing the content and/or yield of high value natural products in diatoms and its application:CN114621906A[P]. 2022.06.14. https://cprs.patentstar.com.cn/Search/Detail?ANE=9EEB9IFE9EFC7EBA9IEE1ABA9ECA6DCAGHHA9DGH9GDD9FGH

  59. Liu Hao. The invention relates to a method for increasing fucoxanthin content by treating Phaeodactylum tricornutum with rapamycin: CN110551673A[P]. 2019.12.10. https://cprs.patentstar.com.cn/Search/Detail?ANE=8DDA3CBA5AEACEGA9FHE9IDC9ADC9DDF9ICF9FHH5BEA9EBD

  60. He Liyan. The formation of Phaeodactylum tricornutum cruciform morphotype and its effects on lipid production characteristics of the algae[D]. Institue of Oceanology, Chinese Academy of Sciences, 2014. https://d.wanfangdata.com.cn/thesis/ChJUaGVzaXNOZXdTMjAyNDAxMDkSC

  61. Martino AD, Bartual A, Willis A et al (2011) Physiological and molecular evidence that environmental changes elicit morphological interconversion in the model diatom Phaeodactylum tricornutum[J]. Protist 162(3):462–481. https://doi.org/10.1016/j.protis.2011.02.002

    Article  PubMed  Google Scholar 

  62. Lijuan W (2018) High through-put screening and evaluation of fucoxanthin overproducing mutant of Phaeodactylum tricornutum[D]. Qingdao University. https://doi.org/10.3390/md19040228

    Article  Google Scholar 

  63. Bauer C, Schmitz C, Corrêa R et al (2019) In vitro fucoxanthin production by the Phaeodactylum tricornutum diatom[M]. Stud Nat Prod Chem 63:211–242. https://doi.org/10.1016/B978-0-12-817901-7.00008-3

    Article  CAS  Google Scholar 

  64. Li, C., Pan, Y., Yin, W. et al. A key gene, violaxanthin de-epoxidase-like 1, enhances fucoxanthin accumulation in Phaeodactylum tricornutum[J]. Biotechnol Biofuels, 2024, 17(49). https://doi.org/10.1186/s13068-024-02496-3

  65. Telussa I, Rusnadi S, Nurachman Z. Dynamics of β-carotene and fucoxanthin of tropical marine Navicula sp. as a response to light stress conditions[J]. Algal Research, 2019, 41:101530. https://doi.org/10.1016/j.algal.2019.101530

  66. Celi C, Fino D, Savorani F (2022) Phaeodactylum tricornutum as a source of value-added products: A review on recent developments in cultivation and extraction technologies[J]. Bioresource Technology Reports 19:1–20. https://doi.org/10.1016/j.biteb.2022.101122

    Article  CAS  Google Scholar 

  67. Villanova V, Singh D, Pagliardini J et al (2021) Boosting Biomass Quantity and Quality by Improved Mixotrophic Culture of the Diatom Phaeodactylum tricornutum[J]. Front Plant Sci 12:1–14. https://doi.org/10.3389/fpls.2021.642199

    Article  Google Scholar 

  68. Huang A, Liu L, Yang C et al (2015) Phaeodactylum tricornutum photorespiration takes part in glycerol metabolism and is important for nitrogen-limited response[J]. Biotechnol Biofuels 8(1):73. https://doi.org/10.1186/s13068-015-0256-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rehmanji M, Nesamma AA, Khan N et al (2022) Media engineering in marine diatom Phaeodactylum tricornutum employing cost-effective substrates for sustainable production of high-value renewables[J]. Biotechnol J 17(10):1–13. https://doi.org/10.1002/biot.202100684

    Article  CAS  Google Scholar 

  70. Huang Jianke, Jiang **shun, Fan Jiangpeng, et al. A method for producing fucoxanthin by coupling culture of Marine microalgae with purification of aquaculture wastewater:CN113373056A[P]. 2021.09.10. https://cprs.patentstar.com.cn/Search/Detail?ANE=5DAA9GEB6CCA8FCA9DHC8CGA8CCA9FGG9IDFCEIA9CGA9IGG

  71. Butler, T. The diatom Phaeodactylum tricornutum as a sustainable microalgal cell factory: towards a biorefinery approach[D]. University of Sheffield. 2021. https://etheses.whiterose.ac.uk/29308

  72. Kumar S, Cheng J, Jia D et al (2021) Enhancing microalgae production by installing concave walls in plate photobioreactors[J]. Biores Technol 345:126479. https://doi.org/10.1016/j.biortech.2021.126479

    Article  CAS  Google Scholar 

  73. Kirnev PCS, Carvalho JC, Vandenberghe LPS et al (2020) Technological map** and trends in photobioreactors for the production of microalgae[J]. World J Microbiol Biotechnol 36(3):42. https://doi.org/10.1007/s11274-020-02819-0

    Article  CAS  PubMed  Google Scholar 

  74. Arora N, Philippidis GP (2021) Fucoxanthin production from diatoms: current advances and challenges[M]. Springer, Berlin, pp 227–242. https://doi.org/10.1007/978-981-15-7518-1_10

    Book  Google Scholar 

  75. Song W, Verma SK, Said IH et al (2018) Changes in the fucoxanthin production and protein profiles in Cylindrotheca closterium in response to blue light-emitting diode light[J]. Microb Cell Fact 17(1):110. https://doi.org/10.1186/s12934-018-0957-0

    Article  CAS  Google Scholar 

  76. Wenzong X, Shuang Y, Liying W, et al Effect of Nitric Oxide on EPA Yield in Phaeodactylum tricornutum under High Light Irradiance[J]. Journal of Tian** University of Science & Technology, 2017,32(1):18–24. https://doi.org/10.13364/j.issn.1672-6510.20150239

  77. Kuczynska P, Jemiola-Rzeminska M, Nowicka B et al (2020) The xanthophyll cycle in diatom Phaeodactylum tricornutum in response to light stress[J]. Plant Physiol Biochem 152:125–137. https://doi.org/10.1016/j.plaphy.2020.04.043

    Article  CAS  PubMed  Google Scholar 

  78. Wang W, Li D, Cao X, et al. Liberating photoinhibition through nongenetic drainage of electrons from photosynthesis[J]. Natural Sciences, 2021,1(2). https://doi.org/10.1002/ntls.20210038

  79. Zhengrong Z, **ujun X, Peipei Z, et al. Effect of different temperatures and light conditions on the growth and fucoxanthin content of Phaeodactylum tricornutum[J]. Marine Sciences,2015,39(7):1–6. https://doi.org/10.11759/hykx20140403002

  80. Fabrowska J, Messyasz B, Szylling J et al (2018) Isolation of Chlorophylls and Carotenoids from Freshwater Algae Using Different Extraction Methods[J]. Phycol Res 66(1):52–57. https://doi.org/10.1111/pre.12191

    Article  CAS  Google Scholar 

  81. Yizhe W, Yijiong Y, Ziyi W, et al. Effect of Light on Growth and Pigment Content of Alga Euglena gracilis[J]. Fisheries Science, 2021,40(2):179–187. https://doi.org/10.16378/j.cnki.1003-1111.19249

  82. Dazhi W, Shiyu H, Zhaodi C (2004) Influences of Light-dark Cycle on Production of Extracellar Polysaccharide in Three Marine Planktonic Diatom Species[J]. Journal of **amen University (Natural Science) 43(2):244–248

    Google Scholar 

  83. Hongyan H, Weipeng X, **rong Z et al (2020) Strain And Light Selection Improved Fucooxanthin Content In The Diatom[J]. Acta Hydrobiol Sin 44(4):912–919. https://doi.org/10.7541/2020.108

    Article  Google Scholar 

  84. Pocha CKR, Chia WY, Chew KW et al (2022) Current advances in recovery and biorefinery of fucoxanthin from Phaeodactylum tricornutum[J]. Algal Res 65:102735. https://doi.org/10.1016/j.algal.2022.102735

    Article  Google Scholar 

  85. Vandamme D, Pontes SCV, Goiris K et al (2011) Evaluation of electro-coagulation-flocculation for harvesting marine and fresh-water microalgae[J]. Biotechnol Bioeng 108(10):2320–2329. https://doi.org/10.1002/bit.23199

    Article  CAS  PubMed  Google Scholar 

  86. Vandamme D, Foubert I, Muylaert K (2013) Flocculation as a low-cost method for harvesting microalgae for bulk biomass production[J]. Trend Biotechnol 31(4):233–239. https://doi.org/10.1016/j.tibtech.2012.12.005

    Article  CAS  Google Scholar 

  87. Dries V, Pohl PI, Beuckels A et al (2015) Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite[J]. Biores Technol 196:656–661. https://doi.org/10.1016/j.biortech.2015.08.042

    Article  CAS  Google Scholar 

  88. Sema S, Rosa T, Carles I et al (2012) Harvesting the microalgae Phaeodactylum tricornutum with polyaluminum chloride, aluminium sulphate, chitosan and alkalinity-induced flocculation[J]. J Appl Phycol 24(5):1067–1080. https://doi.org/10.1007/s10811-011-9736-6

    Article  CAS  Google Scholar 

  89. Warkoyo W, Saati E A. The solvent effectiveness on extraction process of seaweed pigment[J]. makara seri teknologi, 2011(15):5–8. https://doi.org/10.7454/mst.v15i1.850

  90. Table values from Phenomenex catalog.[Online] Available from: https://www.docin.com/p-1590562761.html

  91. Hui Z, Yibo T, Ying Z, et al. Fucoxanthin: A Promising Medicinal and Nutritional Ingredient[J]. Evidence-Based Complementray and Alternative Medicine,2015,(2015–5–27), 2015, 2015:1–10. https://doi.org/10.1155/2015/723515

  92. Yueming L, Jianchun X, Lina X, et al. A method for synthesis extraction of EPA and fucoxanthin from Phaeodactylum tricornutum: CN111205179A[P]. 2020.05.29. https://cprs.patentstar.com.cn/Search/Detail?ANE=8DDA4BDA3ABA9HCA9HCB6AGA8AIA9HAA8BHA5EBA9DIE9AHE

  93. Teramukai K, Kakui S, Beppu F et al (2020) Effective extraction of carotenoids from brown seaweeds and vegetable leaves with edible oils[J]. Innov Food Sci Emerg Technol 60:102302. https://doi.org/10.1016/j.ifset.2020.102302

    Article  CAS  Google Scholar 

  94. Papadaki S, Kyriakopoulou K, Krokida M. Recovery and Encapsualtion of Bioactive Extracts from Haematococcus Pluvialis and Phaedodactylum Tricornutum for food Applications[J]. 2017. https://doi.org/10.9790/2402-1012045358

  95. Weihua T, Kun Y, Peng W, Haisong Y et al (2012) Research on the Methods of Phaeodactylum tricornutum Cells Fragmentation[J]. Academic Periodical of Farm Products Processing 2:48–49. https://doi.org/10.3969/j.issn.1671-9646(X).2012.02.013

    Article  Google Scholar 

  96. Khoo KS, Lee SY, Ooi CW et al (2019) Recent advances in biorefinery of astaxanthin from Haematococcus pluvialis[J]. Biores Technol 288:121606. https://doi.org/10.1016/j.biortech.2019.121606

    Article  CAS  Google Scholar 

  97. Siahaan EA, Chun BS (2020) Innovative Alternative Technology for Fucoxanthin Recovery[M]. John Wiley & Sons Ltd. https://doi.org/10.1002/9781119143802.ch143

    Article  Google Scholar 

  98. LI Minlan, Gong Zehua, Sheng Yan, et al. Advances in Extraction and Analysis Methods of Fucoxanthin[J]. Food Research and Development, 2021, 42(3): 202–206. https://doi.org/10.1016/j.algal.2021.102610

  99. **a S, Wang K, Wan L et al (2013) Production, Characterization, and Antioxidant Activity of Fucoxanthin from the Marine Diatom Odontella aurita[J]. Mar Drugs 11(7):2667–2681. https://doi.org/10.3390/md11072667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dianfeng H, Yingjiang X, Hong** Q, et al. The invention relates to a method for simultaneously extracting DMPT-rich food additive and fucoxanthin rich food additive from chrysolium: CN112778240A[P]. 2021.05.11. https://cprs.patentstar.com.cn/Search/De tail?ANE=AIHA7EDA9CID9GGE5CCA8EEA9FFB9DGF9EIGCHIA9AFCHIHA

  101. Gómez-Loredo A, González-Valdez, José,González-González, Mirna, et al. Practical experiences from the bench-scale implementation of a bioprocess for fucoxanthin production[J]. Journal of Chemical Technology & Biotechnology, 2017. https://doi.org/10.1002/jctb.5494

  102. Alma,Gómez-Loredo,Jorge, et al. Partition behavior of fucoxanthin in ethanol-potassium phosphate two-phase systems[J]. Journal of Chemical Technology & Biotechnology, 2014. 89(11):1637–1645. https://doi.org/10.1002/jctb.4514

  103. Maitian Venture Capital Industry Research Institute. Fucoxanthin Supplements in the Global and Chinese markets 2022–2028: Technology, Players, Trends, Market Size and Share Report[R]. 2022. https://www.qyresearch.com/reports/1069721/fucoxanthin-supplements

  104. Table values from Chemicalbook.[Online] Available from: https://www.chemicalbook.com. [on 10th September, 2023]

  105. Algatechnologies Ltd, https://www.algatech.com

  106. Demeter, http://www.dmtbiotech.com

  107. Li J, Zhu D, Niu J et al (2011) An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis[J]. Biotechnol Adv 29(6):568–574. https://doi.org/10.1016/j.biotechadv.2011.04.001

    Article  CAS  PubMed  Google Scholar 

  108. Nancy Z, Roxana S, Rindala K et al (2018) Extraction of astaxanthin from microalgae: process design and economic feasibility study[C]. IOP Conference Series: Materials Science and Engineering 323(1):012011. https://doi.org/10.1088/1757-899X/323/1/012011

    Article  Google Scholar 

  109. Milledge JJ (2011) Commercial application of microalgae other than as biofuels: a brief review[J]. Rev Environ Sci Biotechnol 10:31–41. https://doi.org/10.1007/s11157-010-9214-7

    Article  Google Scholar 

  110. Khaw YS, Yusoff FM, Tan HT, Noor Mazli NAI, Nazarudin MF, Shaharuddin NA, Omar AR, Takahashi K (2022) Fucoxanthin production of microalgae under different culture factors: a systematic review. Mar Drugs 20(10):592. https://doi.org/10.3390/md20100592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wan M, Zhang J, Hou D et al (2014) The effect of temperature on cell growth and astaxanthin accumulation of Haematococcus pluvialis during a light-dark cyclic cultivation[J]. Biores Technol 167:276–283. https://doi.org/10.1016/j.biortech.2014.06.030

    Article  CAS  Google Scholar 

  112. Zhu Defei, Yang Runqing, Wei Dong. Enhancing fucoxanthin production in Phaeodactylum tricornutum by photofermentation[J]. Chinese Journal of Biotechnology, 2023, 39(3): 1070–1082. https://doi.org/10.13345/j.cjb.220540

  113. Huntley ME, Redalje DG (2007) CO2 Mitigation and Renewable Oil from Photosynthetic Microbes: A New Appraisal[J]. Mitig Adapt Strat Glob Change 12(4):573–608. https://doi.org/10.1007/s11027-006-7304-1

    Article  Google Scholar 

  114. Yip, W.H.; Lim, S.J.; Mustapha, W.A.W.; Maskat, M.Y.; Said, M. Characterisation and stability of pigments extracted from Sargassum binderi obtained from Semporna, Sabah. Sains Malays. 2014, 43(9): 1345–1354. https://www.semanticscholar.org/paper/Characterisation-and- Stability-of-Pigments- from-dan-Yip-Joe/06a9640c5d2bb260dd4e49069b911e0efb843dee?utm_source=direct_link

  115. Ma Z, Khalid N, Shu G, Zhao Y, Kobayashi I, Neves MA, Tuwo A, Nakajima M (2019) Fucoxanthin-Loaded Oil-in-Water Emulsion-Based Delivery Systems: Effects of Natural Emulsifiers on the Formulation, Stability, and Bioaccessibility. ACS Omega 4(6):10502–10509. https://doi.org/10.1021/acsomega.9b00871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Song Yi Koo, Keum Taek Hwang, Soonjae Hwang, Ki Young Choi, Yun Ji Park, Jae-Hyeong Choi, To Quyen Truong, Sang Min Kim. Nanoencapsulation enhances the bioavailability of fucoxanthin in microalga Phaeodactylum tricornutum extract[J]. Food Chemistry, 2023: 403, 134348. https://doi.org/10.1016/j.foodchem.2022.134348

Download references

Acknowledgements

This work is financially supported by the project (2023) of Weihai Branch of **an Fruit Research Institute of China Supply and Marketing Cooperative Society—Preparation and processing technology of comprehensive enzymes for Weihai Characteristic agricultural products and Marine plants (Grant number: WHFY2023010).

Author information

Authors and Affiliations

Authors

Contributions

YLP, LQD, BS, YLC, XYL and TTW: contributed to the conception and design of the review paper; TTW compiled the literature data; YLC: coordinated the literature research and evaluation; BS, XYL and TTW: designed the fgures; YLP, YLC and LQD: wrote the manuscript. All the authors contributed to the critical revision and fnal approval of the manuscript.

Corresponding author

Correspondence to Yunlong Pang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, Y., Duan, L., Song, B. et al. A Review of Fucoxanthin Biomanufacturing from Phaeodactylum tricornutum. Bioprocess Biosyst Eng (2024). https://doi.org/10.1007/s00449-024-03039-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00449-024-03039-8

Keywords

Navigation