Log in

Metabolic engineering and optimization of the fermentation medium for vitamin B12 production in Escherichia coli

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Vitamin B12 is a crucial fine chemical that is widely used in the pharmaceutical, food and chemical industries, and its production solely dependents on microbial fermentation. We previously constructed an artificial vitamin B12 biosynthesis pathway in Escherichia coli, but the yield of the engineered strains was low. Here, we removed metabolic bottlenecks of the vitamin B12 biosynthesis pathway in engineered E. coli strains. After screening cobB genes from different sources, optimizing the expression of cobN and customizing the ribosome binding sites of cobS and cobT, the vitamin B12 yield increased to 152.29 μg/g dry cell weight (DCW). Optimization of the downstream module, which converts co(II)byrinic acid a,c-diamide into adenosylcobinamide phosphate, elevated the vitamin B12 yield to 249.04 μg/g DCW. A comparison of a variety of equivalent components indicated that glucose and corn steep liquor are optimal carbon and nitrogen sources, respectively. Finally, an orthogonal array design was applied to determine the optimal concentrations of glucose and nitrogen sources including corn steep liquor and yeast extract, through which a vitamin B12 yield of 530.29 μg/g DCW was obtained. The metabolic modifications and optimization of fermentation conditions achieved in this study offer a basis for further improving vitamin B12 production in E. coli and will hopefully accelerate its industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  1. Martens JH, Barg H, Warren MJ, Jahn D (2002) Microbial production of vitamin B12. Appl Microbiol Biotechnol 58(3):275–285. https://doi.org/10.1007/s00253-001-0902-7

    Article  CAS  PubMed  Google Scholar 

  2. Fang H, Kang J, Zhang D (2017) Microbial production of vitamin B12: a review and future perspectives. Microb Cell Fact 16(1):15. https://doi.org/10.1186/s12934-017-0631-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol. https://doi.org/10.1038/nbt833

    Article  PubMed  Google Scholar 

  4. Choi SY, Park SJ, Kim WJ, Yang JE, Lee H, Shin J, Lee SY (2016) One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli. Nat Biotechnol 34(4):435–440. https://doi.org/10.1038/nbt.3485

    Article  CAS  PubMed  Google Scholar 

  5. Liu Y, Liu Q, Krivoruchko A, Khoomrung S, Nielsen J (2019) Engineering yeast phospholipid metabolism for de novo oleoylethanolamide production. Nat Chem Biol. https://doi.org/10.1038/s41589-019-0431-2

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fang H, Li D, Kang J, Jiang P, Sun J, Zhang D (2018) Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B12. Nat Commun 9(1):4917. https://doi.org/10.1038/s41467-018-07412-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Park SY, Yang D, Ha SH, Lee SY (2018) Metabolic engineering of microorganisms for the production of natural compounds. Adv Biosyst 2(1):1. https://doi.org/10.1002/adbi.201700190

    Article  Google Scholar 

  8. Yang D, Park SY, Park YS, Eun H, Lee SY (2020) Metabolic engineering of Escherichia coli for natural product biosynthesis. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2019.11.007

    Article  PubMed  Google Scholar 

  9. Keasling JD (2008) Synthetic biology for synthetic chemistry. ACS Chem Biol 3(1):64–76. https://doi.org/10.1021/cb7002434

    Article  CAS  PubMed  Google Scholar 

  10. Lee SY, Kim HU (2015) Systems strategies for develo** industrial microbial strains. Nat Biotechnol 33(10):1061–1072. https://doi.org/10.1038/nbt.3365

    Article  CAS  PubMed  Google Scholar 

  11. Kim B, Du J, Eriksen DT, Zhao H (2013) Combinatorial design of a highly efficient xylose-utilizing pathway in Saccharomyces cerevisiae for the production of cellulosic biofuels. Appl Environ Microbiol 79(3):931–941. https://doi.org/10.1128/AEM.02736-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nybo SE, Saunders J, McCormick SP (2017) Metabolic engineering of Escherichia coli for production of valerenadiene. J Biotechnol 262:60–66. https://doi.org/10.1016/j.jbiotec.2017.10.004

    Article  CAS  PubMed  Google Scholar 

  13. Ling M, Liu Y, Li J, Shin HD, Chen J, Du G, Liu L (2017) Combinatorial promoter engineering of glucokinase and phosphoglucoisomerase for improved N-acetylglucosamine production in Bacillus subtilis. Biores Technol 245(Pt A):1093–1102. https://doi.org/10.1016/j.biortech.2017.09.063

    Article  CAS  Google Scholar 

  14. Shukal S, Chen X, Zhang C (2019) Systematic engineering for high-yield production of viridiflorol and amorphadiene in auxotrophic Escherichia coli. Metab Eng 55:170–178. https://doi.org/10.1016/j.ymben.2019.07.007

    Article  CAS  PubMed  Google Scholar 

  15. Yang P, Wang J, Pang Q, Zhang F, Wang J, Wang Q, Qi Q (2017) Pathway optimization and key enzyme evolution of N-acetylneuraminate biosynthesis using an in vivo aptazyme-based biosensor. Metab Eng 43(Pt A):21–28. https://doi.org/10.1016/j.ymben.2017.08.001

    Article  CAS  PubMed  Google Scholar 

  16. Yunus IS, Palma A, Trudeau DL, Tawfik DS, Jones PR (2020) Methanol-free biosynthesis of fatty acid methyl ester (FAME) in Synechocystis sp. PCC 6803. Metab Eng 57:217–227. https://doi.org/10.1016/j.ymben.2019.12.001

    Article  CAS  PubMed  Google Scholar 

  17. Zhao D, Yuan S, **ong B, Sun H, Ye L, Li J, Zhang X, Bi C (2016) Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9. Microb Cell Fact 15(1):205. https://doi.org/10.1186/s12934-016-0605-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345. https://doi.org/10.1038/nmeth.1318

    Article  CAS  PubMed  Google Scholar 

  19. Qi D, Scholthof K-BG (2008) A one-step PCR-based method for rapid and efficient site-directed fragment deletion, insertion, and substitution mutagenesis. J Virol Methods 149(1):85–90. https://doi.org/10.1016/j.jviromet.2008.01.002

    Article  CAS  PubMed  Google Scholar 

  20. Wu X, Leung DYC (2011) Optimization of biodiesel production from camelina oil using orthogonal experiment. Appl Energy 88(11):3615–3624. https://doi.org/10.1016/j.apenergy.2011.04.041

    Article  CAS  Google Scholar 

  21. Debussche L, Couder M, Thibaut D, Cameron B, Crouzet J, Blanche F (1992) Assay, purification, and characterization of cobaltochelatase, a unique complex enzyme catalysing cobalt insertion in hydrogenobyrinic acid a, c-diamide during coenzyme B12 biosynthesis in Pseudomonas denitrificans. J Bacteriol 174(22):7445–7451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lundqvist J, Elmlund D, Heldt D, Deery E, Soderberg CA, Hansson M, Warren M, Al-Karadaghi S (2009) The AAA(+) motor complex of subunits CobS and CobT of cobaltochelatase visualized by single particle electron microscopy. J Struct Biol 167(3):227–234. https://doi.org/10.1016/j.jsb.2009.06.013

    Article  CAS  PubMed  Google Scholar 

  23. Heldt D, Lawrence AD, Lindenmeyer M, Deery E, Heathcote P, Rigby SE, Warren MJ (2005) Aerobic synthesis of vitamin B12: ring contraction and cobalt chelation. Biochem Soc Trans 33(4):815–819. https://doi.org/10.1042/bst0330815

    Article  CAS  PubMed  Google Scholar 

  24. Roy V, Roth R, Berge M, Chitta R, Vajrala S, Kuntumalla S (2017) A bicistronic vector with destabilized mRNA secondary structure yields scalable higher titer expression of human neurturin in E. coli. Biotechnol Bioeng 114(8):1753–1761. https://doi.org/10.1002/bit.26299

    Article  CAS  PubMed  Google Scholar 

  25. Wu G, Yan Q, Jones JA, Tang YJ, Fong SS, Koffas MAG (2016) Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol 34(8):652–664. https://doi.org/10.1016/j.tibtech.2016.02.010

    Article  CAS  PubMed  Google Scholar 

  26. Ow DS-W, Nissom PM, Philp R, Oh SK-W, Yap MG-S (2006) Global transcriptional analysis of metabolic burden due to plasmid maintenance in Escherichia coli DH5α during batch fermentation. Enzyme Microbial Technol 39(3):391–398. https://doi.org/10.1016/j.enzmictec.2005.11.048

    Article  CAS  Google Scholar 

  27. Hedayati R, Hosseini M, Najafpour GD (2020) Optimization of semi-anaerobic vitamin B12 (cyanocobalamin) production from rice bran oil using Propionibacterium freudenreichii PTCC1674. Biocatal Agric Biotechnol. https://doi.org/10.1016/j.bcab.2019.101444

    Article  Google Scholar 

  28. Jalilian N, Najafpour GD, Khajouei M (2019) Enhanced vitamin B12 production using Chlorella vulgaris. Int J Eng Trans A 32(1):1–9. https://doi.org/10.5829/ije.2019.32.01a.01

    Article  Google Scholar 

  29. **a W, Chen W, Peng WF, Li KT (2015) Industrial vitamin B12 production by Pseudomonas denitrificans using maltose syrup and corn steep liquor as the cost-effective fermentation substrates. Bioprocess Biosyst Eng 38(6):1065–1073. https://doi.org/10.1007/s00449-014-1348-5

    Article  CAS  PubMed  Google Scholar 

  30. Yu AQ, Zhu JC, Zhang B, **ng LJ, Li M (2011) Effects of different carbon sources on the growth, fatty acids production, and expression of three desaturase genes of Mortierella alpina ATCC 16266. Curr Microbiol 62(5):1617–1622. https://doi.org/10.1007/s00284-011-9902-8

    Article  CAS  PubMed  Google Scholar 

  31. Bhattacharya SK, Dubey AK (1997) High-level expression of a heterologous gene in Escherichia coli in response to carbon-nitrogen source and C/N ratio in a batch bioreactor. Biotechnol Prog 13(2):151–155. https://doi.org/10.1021/bp970007t

    Article  CAS  PubMed  Google Scholar 

  32. Shariati S, Zare D, Mirdamadi S (2019) Screening of carbon and nitrogen sources using mixture analysis designs for carotenoid production by Blakeslea trispora. Food Sci Biotechnol 28(2):469–479. https://doi.org/10.1007/s10068-018-0484-0

    Article  CAS  PubMed  Google Scholar 

  33. Wang X, **a K, Yang X, Tang C (2019) Growth strategy of microbes on mixed carbon sources. Nat Commun 10(1):1279. https://doi.org/10.1038/s41467-019-09261-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Perrin E, Giovannini M, Di Patti F, Cardazzo B, Carraro L, Fagorzi C, Ghini V, Turano P, Fani R, Fondi M (2019) Diauxie and co-utilization are not exclusive during growth in nutritionally complex environments. 752832

  35. Ruiz B, Chavez A, Forero A, Garcia-Huante Y, Romero A, Sanchez M, Rocha D, Sanchez B, Rodriguez-Sanoja R, Sanchez S, Langley E (2010) Production of microbial secondary metabolites: regulation by the carbon source. Crit Rev Microbiol 36(2):146–167. https://doi.org/10.3109/10408410903489576

    Article  CAS  PubMed  Google Scholar 

  36. Wang P, Zhang Z, Jiao Y, Liu S, Wang Y (2015) Improved propionic acid and 5,6-dimethylbenzimidazole control strategy for vitamin B12 fermentation by Propionibacterium freudenreichii. J Biotechnol 193:123–129. https://doi.org/10.1016/j.jbiotec.2014.11.019

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (2018YFA0900300), the National Natural Science Foundation of China (31900052, 31470787), Department of Science and Technology of Jilin Province (20190902014TC), and the Science and Technology Service Network (STS) Initiative of the Chinese Academy of Sciences (CAS) (KFJ-STS-ZDTP-065).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qun Wei, Dayu Yu or Dawei Zhang.

Ethics declarations

Conflict of interest

The authors indicate that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 297 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Fang, H., Gai, Y. et al. Metabolic engineering and optimization of the fermentation medium for vitamin B12 production in Escherichia coli. Bioprocess Biosyst Eng 43, 1735–1745 (2020). https://doi.org/10.1007/s00449-020-02355-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02355-z

Keywords

Navigation