Log in

Strategies related to light quality and temperature to improve lutein production of marine microalga Chlamydomonas sp.

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The marine microalga Chlamydomonas sp. JSC4 was examined for its potential as a lutein producer. Environmental conditions, including light quality, temperature and light wavelength mixing ratio, were individually altered to enhance the cell growth rate and lutein production in strain JSC4. Results showed that optimal cell growth was obtained under white light and a temperature of 35 °C, while the optimal lutein content was obtained under blue light and a lower temperature of 20–25 °C. The best lutein production occurred when using a mixing ratio of 3:1 (white light: blue light). Strategies related to light quality and temperature (namely, temperature-gradient and two-stage strategies) were then used to further improve lutein production. Among them, the two-stage strategy proved to be effective markedly improving lutein content from 2.52 to 4.24 mg/g and resulting in the highest lutein productivity of 3.25 mg/L/day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ho SH, Chan MC, Liu CC, Chen CY, Lee WL, Lee DJ, Chang JS (2014) Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies. Bioresour Technol 152:275–282

    Article  CAS  PubMed  Google Scholar 

  2. Niyogi KK, Olle B (1997) The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci USA 94:14162–14162

    Article  CAS  PubMed  Google Scholar 

  3. Panova IG, Yakovleva MA, Tatikolov AS, Kononikhin AS, Feldman TB, Poltavtseva RA, Nikolaev EN, Sukhikh GT, Ostrovsky MA (2017) Lutein and its oxidized forms in eye structures throughout prenatal human development. Exp Eye Res 160:31–37

    Article  CAS  PubMed  Google Scholar 

  4. Lin JH, Lee DJ, Chang JS (2015) Lutein production from biomass: marigold flowers versus microalgae. Bioresour Technol 184:421–428

    Article  CAS  PubMed  Google Scholar 

  5. Astorg P (1997) Food carotenoids and cancer prevention: an overview of current research. Trends Food Sci Technol 8:406–413

    Article  CAS  Google Scholar 

  6. Hua J, Nagarajan D, Zhang Q, Chang JS, Lee DJ (2018) Heterotrophic cultivation of microalgae for pigment production: a review. Biotechnol Adv 36:54–67

    Article  CAS  Google Scholar 

  7. Heo J, Shin DS, Cho K, Cho DH, Lee YJ, Kim HS (2018) Indigenous microalga Parachlorella sp. JD-076 as a potential source for lutein production: optimization of lutein productivity via regulation of light intensity and carbon source. Algal Res 33:1–7

    Article  Google Scholar 

  8. Dineshkumar R, Subramanian G, Dash SK, Sen R (2016) Development of an optimal light-feeding strategy coupled with semi-continuous reactor operation for simultaneous improvement of microalgal photosynthetic efficiency, lutein production and CO2 sequestration. Biochem Eng J 113:47–56

    Article  CAS  Google Scholar 

  9. Chen CY, Nagarajan D, Chang CH, Ng IS, Lee DJ, Chang JS (2018) A highly efficient two-stage cultivation strategy for lutein production using heterotrophic culture of Chlorella sorokiniana MB-1-M12. Bioresour Technol 253:141–147

    Article  CAS  PubMed  Google Scholar 

  10. Bermejo E, Ruiz-Domínguez MC, Cuaresma M, Vaquero I, Ramos-Merchante A, Vega JM, Vílchez C, Garbayo I (2018) Production of lutein, and polyunsaturated fatty acids by the acidophilic eukaryotic microalga Coccomyxa onubensis under abiotic stress by salt or ultraviolet light. J Biosci Bioeng 125:669–675

    Article  CAS  PubMed  Google Scholar 

  11. **e Y, Zhao X, Chen J, Yang X, Ho SH, Wang B, Chang JS, Shen Y (2017) Enhancing cell growth and lutein productivity of Desmodesmus sp. F51 by optimal utilization of inorganic carbon sources and ammonium salt. Bioresour Technol 244:664–671

    Article  CAS  PubMed  Google Scholar 

  12. Kim TH, Lee Y, Han SH, Hwang SJ (2013) The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. Bioresour Technol 130:75–80

    Article  CAS  PubMed  Google Scholar 

  13. Telfer A (2002) What is β–carotene doing in the photosystem II reaction centre? Phil Trans R Soc Lond B 357:1431–1440

    Article  CAS  Google Scholar 

  14. Fu W, Guethmundsson O, Paglia G, Herjolfsson G, Andresson OS, Palsson BO, Brynjolfsson S (2013) Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Appl Microbiol Biotechnol 97:2395–2403

    Article  CAS  PubMed  Google Scholar 

  15. Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta-Bioenerg 1817:182–193

    Article  CAS  Google Scholar 

  16. You T, Barnett SM (2004) Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum. Biochem Eng J 19:251–258

    Article  CAS  Google Scholar 

  17. Yungyuen W, Ma G, Zhang L, Futamura M, Tabuchi M, Yamawaki K, Yahata M, Ohta S, Yoshioka T, Kato M (2018) Regulation of carotenoid metabolism in response to different temperatures in citrus juice sacs in vitro. Sci Hortic 238:384–390

    Article  CAS  Google Scholar 

  18. Orset S, Young AJ (1999) Low-temperature-induced synthesis of α-carotene in the microalga Dunaliella salina (chlorophyta). J Phycol 35:520–527

    Article  CAS  Google Scholar 

  19. ** ES, Melis A (2003) Microalgal biotechnology: carotenoid production by the green algae Dunaliella salina. Biotechnol Bioprocess Eng 8:1226–8372

    Article  Google Scholar 

  20. Gong M, Bassi A (2017) Investigation of Chlorella vulgaris UTEX 265 cultivation under light and low temperature stressed conditions for lutein production in flasks and the coiled tree photo-bioreactor (CTPBR). Appl Biochem Biotechnol 183:652–671

    Article  CAS  PubMed  Google Scholar 

  21. Khanal N, Bray GE, Grisnich A, Moffatt BA, Gray GR (2017) Differential mechanisms of photosynthetic acclimation to light and low temperature in Arabidopsis and the extremophile Eutrema salsugineum. Plants 6:32

    Article  CAS  PubMed Central  Google Scholar 

  22. Ensminger I, Busch F, Huner NPA (2006) Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiol Plant 126:28–44

    Article  CAS  Google Scholar 

  23. Ho SH, Nakanishi A, Ye X, Chang JS, Hara K, Hasunuma T, Kondo A (2014) Optimizing biodiesel production in marine Chlamydomonas sp. JSC4 through metabolic profiling and an innovative salinity-gradient strategy. Biotechnol Biofuels 7:97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pedro AS, Gonzalez-Lopez CV, Acien FG, Molina-Grima E (2013) Marine microalgae selection and culture conditions optimization for biodiesel production. Bioresour Technol 134:353–361

    Article  CAS  Google Scholar 

  25. Leonardi RJ, Niizawa I, Irazoqui HA, Heinrich JM (2018) Modeling and simulation of the influence of fractions of blue and red light on the growth of the microalga Scenedesmus quadricauda. Biochem Eng J 129:16–25

    Article  Google Scholar 

  26. Dasa P, Lei W, Aziz SS, Obbard JP (2011) Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresour Technol 102:3883–3887

    Article  CAS  Google Scholar 

  27. Ruyters G (1984) Effects of blue light on enzymes. In: Senger H (ed) Blue light effects in biological systems. Springer, Berlin, pp 283–301

    Chapter  Google Scholar 

  28. Lee N, Ko SR, Ahn CY, Oh HM (2018) Optimized co-production of lipids and carotenoids from Ettlia sp. by regulating stress conditions. Bioresour Technol 258:234–239

    Article  CAS  PubMed  Google Scholar 

  29. Sánchez JF, Fernández JM, Acién FG, Rueda A, Pérez-Parra J, Molina E (2008) Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem 43:398–405

    Article  CAS  Google Scholar 

  30. Cordero BF, Obraztsova I, Couso I, Leon R, Vargas MA, Rodriguez H (2011) Enhancement of lutein production in Chlorella sorokiniana (Chorophyta) by improvement of culture conditions and random mutagenesis. Mar Drugs 9:1607–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gombos Z, Wada H, Murata N (1992) Unsaturation of fatty acids in membrane lipids enhances tolerance of the cyanobacterium Synechocystis PCC6803 to low-temperature photoinhibition. Proc Natl Acad Sci USA 89:9959–9963

    Article  CAS  PubMed  Google Scholar 

  32. González-Fernández C, Sialve B, Bernet N, Steyer JP (2012) Impact of microalgae characteristics on their conversion to biofuel. Part II: focus on biomethane production. Biofuels Bioprod Biorefining 6:205–218

    Article  CAS  Google Scholar 

  33. Shi X, Wu Z, Chen F (2006) Kinetic modeling of lutein production by heterotrophic Chlorella at various pH and temperatures. Mol Nutr Food Res 50:763–768

    Article  CAS  PubMed  Google Scholar 

  34. Wang YB, Liu FM, Zhang XF, Zhang AJ, Wang B, Zheng Z, Sun CJ, Miao JL (2016) Composition and regulation of thylakoid membrane of Antarctic ice microalgae Chlamydomonas sp. ICE-L in response to low-temperature environment stress. J Mar Biol Assoc UK 97:1241–1249

    Google Scholar 

  35. Sánchez-Saavedra MP, Voltolina D (2002) Effect of photon fluence rates of white and blue-green light on growth efficiency and pigment content of three diatom species in batch cultures. Ceinc Mar 28:273–279

    Article  Google Scholar 

  36. Wallen DG, Geen GH (1971) Light quality and concentration of proteins, RNA, DNA and photosynthetic pigments in two species of marine plankton algae. Mar Biol 10:44

    Article  CAS  Google Scholar 

  37. Johnson EJ, Rubakhin SS, Wang L, Sweedler JV, Neuringer M (2015) Lutein and brain function. Food 4:547–564

    Article  CAS  Google Scholar 

  38. Payer HD, Sotriffe U, Mohr H (1969) Effects of blue and red light on photosynthetic 14CO2 uptake, and distribution of 14C in free and proteinbound amino acids in fern gametophytes [Dryopteris filix-mas (L.) Schott]. Planta 85:270–283

    Article  CAS  PubMed  Google Scholar 

  39. Maxwell DP, Falk S, Trick CC, Huner NPA (1994) Growth at low temperature mimics high-light acclimation in Chlorella vulgaris. Plant Physiol 105:535–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. **e Y, Ho SH, Chen CNN, Chen CY, Ng IS, **g KJ, Chang JS, Lu Y (2013) Phototrophic cultivation of a thermo-tolerant Desmodesmus sp. for lutein production: effects of nitrate concentration, light intensity and fed-batch operation. Bioresour Technol 144:435–444

    Article  CAS  PubMed  Google Scholar 

  41. Jagannadham MV, Chattopadhyay MK, Subbalakshmi C, Vairamani M, Narayanan K, Rao CM, Shivaji S (2000) Carotenoids of an antarctic psychrotolerant bacterium, Sphingobacterium antarcticus, and a mesophilic bacterium, Sphingobacterium multivorum. Arch Microbiol 173:418–424

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 41641050), the Natural Science Foundation of Fujian Province, China (No. 2016J05077), the Oceans and Fisheries Bureau of Fuzhou, China (No. FZHJ15 and FZHJ04), and the Special Fund for Fujian Ocean High-Tech Industry Development, China (No. [2016] 15).

Author information

Authors and Affiliations

Authors
  • Corresponding authors

    Correspondence to You** **e or Jianfeng Chen.

    Rights and permissions

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Zhao, X., Ma, R., Liu, X. et al. Strategies related to light quality and temperature to improve lutein production of marine microalga Chlamydomonas sp.. Bioprocess Biosyst Eng 42, 435–443 (2019). https://doi.org/10.1007/s00449-018-2047-4

    Download citation

    • Received:

    • Accepted:

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1007/s00449-018-2047-4

    Keywords

    Navigation